Những câu hỏi liên quan
H24
Xem chi tiết
HN
24 tháng 7 2016 lúc 22:35

C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)

Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)

\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)

Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)

Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...

Bình luận (0)
HN
25 tháng 7 2016 lúc 9:00

C4 : Bạn cần thêm điều kiện x là số dương nhé : )

Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy : 

\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)

Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)

C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :) 

\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)

Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)

Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)

Vậy .......

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
26 tháng 7 2016 lúc 21:31

P=5x+3y+12/x+16/y 
=3x+12/x+y+16/y+2(x+y) 
áp dụng cosi: 3x+12/x>=2√(3.12)=12 
y+16/y>=8 
lại có 2(x+y)>=2.6=12 
nên 
P>=12+8+12=32 
dấu = khi 3x=12/x và y=16/y và x+y=6 
==> x=2; y=4 
giá trị nhỏ nhất P=32 khi x=2; y=4

Bình luận (0)
AH
11 tháng 8 2018 lúc 7:31

làm bừa thui,ai tích mình mình tích lại

số dư lớn nhất bé hơn 175 là 174

số nhỏ nhất có 4 chữ số là 1000

Mà 1000:175=5( dư 125)

số đó là:

Bình luận (0)
BN
30 tháng 8 2018 lúc 20:54

cho x>0, y>0 và x+y lớn hơn hoặc bằng 6.

P=5x+3y+12/x+16/y 

=3x+12/x+y+16/y+2(x+y) 

áp dụng cosi: 3x+12/x>=2√(3.12)=12 

y+16/y>=8 

lại có 2(x+y)>=2.6=12 

nên 

P>=12+8+12=32 

dấu = khi 3x=12/x và y=16/y và x+y=6 

==> x=2; y=4 

giá trị nhỏ nhất P=32 khi x=2; y=4

Bình luận (0)
DM
Xem chi tiết
HP
24 tháng 1 2016 lúc 21:03

|x+2| > 0

=>-3-|x+2| < -3-0=-3

=>GTNN là -3

dấu "=" xảy ra<=>x+2=0<=>x=-2

Bình luận (0)
JL
Xem chi tiết
EC
17 tháng 7 2019 lúc 21:54

Ta có: x4 \(\ge\)\(\forall\)x

=> x4 + 5 \(\ge\)\(\forall\)x

=> (x4 + 5)2 \(\ge\)25 \(\forall\)x

Dấu "=" xảy ra <=> x = 0

Vậy Min của A = 25 tại x = 0

Bình luận (0)
PL
17 tháng 7 2019 lúc 21:54

\(A=\left(x^4+5\right)^2=x^8+10x^4+25=x^4\left(x^4+10\right)+25\)

Vì \(x^4\ge0\)và \(x^4+10>0\)

\(\Rightarrow B_{min}=25\Leftrightarrow x^4\left(x^4+10\right)=0\)

\(\Rightarrow\hept{\begin{cases}x^4=0\\x^4+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

\(KL:B_{min}=25\Leftrightarrow x=0\)

Bình luận (0)
HN
Xem chi tiết
H24
25 tháng 2 2022 lúc 8:35

\(C=x^2+2x+1\dfrac{1}{2}\\ \Rightarrow C=\left(x^2+2x+1\right)+\dfrac{1}{2}\\ \Rightarrow C=\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

Vậy \(C_{min}=\dfrac{1}{2}\Leftrightarrow x=-1\)

Bình luận (0)
TT
25 tháng 2 2022 lúc 8:37

 \(C=x^2+2x+1\dfrac{1}{2}.\\ C=x^2+2x+1+\dfrac{1}{2}.\\ C=\left(x+1\right)^2+\dfrac{1}{2}.\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in R.\\ \dfrac{1}{2}>0. \)

\(\Rightarrow\left(x+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}.\)

Dấu "=" xảy ra khi \(x+1=0.\Leftrightarrow x=-1.\)

Vậy GTNN của biểu thức C là \(\dfrac{1}{2}\) khi x = -1.

Bình luận (0)
TL
25 tháng 2 2022 lúc 8:45

x = 1

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
TL
4 tháng 9 2017 lúc 21:15

Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)

\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)

Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)

          \(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)

\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)

Vậy MaxA=1/8 khi x=8

Bình luận (0)
VC
4 tháng 9 2017 lúc 21:16

min trước nhé max mình đang nghĩ 

ta có 

ĐKXĐ \(x>=4\)

vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)

=> \(\frac{\sqrt{x-4}}{2x}>=0\)

dấu = xảy ra <=> x=4

Bình luận (0)
VC
4 tháng 9 2017 lúc 21:31

min của bạn long sai rồi A>=0 mà 

t acùng tìm max = cách khác nhé 

ta có \(A=\frac{\sqrt{x-4}}{2x}=\frac{4.\sqrt{x-4}}{8x}=\frac{x-\left(x-4\right)+4\sqrt{x-4}-4}{8x}\)

            \(=\frac{1}{8}-\frac{\left(\sqrt{x-4}-2\right)^2}{8x}\)

đến đây thì dễ rồi nhé A max=1/8<=> x=8

Bình luận (0)
LM
Xem chi tiết
AN
21 tháng 1 2017 lúc 15:35

\(A=a^4-2a^3+3a^2-4a+5\)

\(=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)

\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu =  xảy ra khi a = 1

Bình luận (0)
DA
15 tháng 3 2017 lúc 20:46

1 nha bạn

Bình luận (0)