GIẢI PHƯƠNG TRÌNH BẰNG CÁCH ĐẶT ẨN PHỤ \(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
Giải phương trình sau bằng cách đặt ẩn phụ:
\(\dfrac{x}{\sqrt{4x-1}}+\dfrac{\sqrt{4x-1}}{x}=2\)
Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)
Theo đề, ta có phương trình:
a+1/a=2
\(\Leftrightarrow a+\dfrac{1}{a}=2\)
\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)
=>a=1
=>\(x=\sqrt{4x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
giải phương trình bằng cách đặt ẩn phụ help me
Đặt \(u=\sqrt{x+1};t=\sqrt{1-x};\text{đ}k:-1\le x\le1\)
Phương trình trở thành:
\(u+2u^2=-t^2+t+3ut\Leftrightarrow\left(u-t\right)^2+u\left(u-t\right)+\left(u-t\right)=0\)
\(\Leftrightarrow\left(u-t\right)\left(2u-t+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=t\\2u+1=t\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-24}{25}\end{cases}}}\)
mình dùng cách khác nhé :((
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\left(đk:-1\le x\le1\right)\)
\(< =>\sqrt{x+1}-1+2x+2-3=x-1+\sqrt{1-x}-1+3\sqrt{1-x^2}-3\)
\(< =>\frac{x}{\sqrt{x+1}+1}+2x-1-x+1=-\frac{x}{\sqrt{1-x}+1}+\frac{9\left(1-x^2-1\right)}{3\sqrt{1-x^2}+3}\)
\(< =>\frac{x}{\sqrt{x+1}+1}+x+\frac{x}{\sqrt{1-x}+1}+\frac{9x^2}{3\sqrt{1-x^2}+3}=0\)
\(< =>x\left(\frac{1}{\sqrt{x+1}+1}+1+\frac{1}{\sqrt{1+x}+1}+\frac{9x}{3\sqrt{1-x^2}+3}\right)=0< =>x=0\)
rồi đến đây dùng đk đánh giá cái ngoặc khác 0 là ok
\(\sqrt[4]{x}=\dfrac{1}{\sqrt[4]{2}}-\sqrt{\dfrac{1}{1+\sqrt{2}}-x}\)
Giải phương trình bằng cách đặt ẩn phụ đưa về hệ phương trình
Giải phương trình:
(x+1)\(\sqrt{x^2-2x+3}\)=x2+1
(Giải bằng cách đặt ẩn phụ nha)
ĐK: \(x>-1\)
\(PT\Leftrightarrow a^2-\left(x+1\right)a+2x-2=0\)
\(\Leftrightarrow\left(2-a\right)\left(x-a-1\right)=0\)
.Làm nốt.
~Ko chắc~
À quên: Đặt \(a=\sqrt{x^2-2x+3}\ge\sqrt{2}\)
(x+1)\(\sqrt{x^2-2x+3}\)=\(x^2\)+1
(x+1)\(\sqrt{\left(x-1\right)^2+2}\)-(x+1)(x-1)=0
(x+1)(x-1-x+1+\(\sqrt{2}\))=0
(x+1)\(\sqrt{2}\)=0
<=>x+1=0
<=>x=-1
Giải phương trình (bằng phương pháp ẩn phụ): \(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\).
ĐKXĐ: \(x\ge1\)
Do \(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}=\sqrt{x^2-x^2+1}=1\)
Đặt \(\sqrt{x-\sqrt{x^2-1}}=t\Rightarrow\sqrt{x+\sqrt{x^2-1}}=\dfrac{1}{t}\)
Phương trình trở thành:
\(t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\Rightarrow t=1\)
\(\Rightarrow\sqrt{x-\sqrt{x^2-1}}=1\Leftrightarrow x-\sqrt{x^2-1}=1\)
\(\Leftrightarrow x-1=\sqrt{x^2-1}\)
\(\Rightarrow x^2-2x+1=x^2-1\)
\(\Rightarrow x=1\) (thỏa mãn)
Giải phương trình sau bằng cách đặt ẩn phụ:
\(\sqrt[4]{x}+\sqrt[4]{x+1}=\sqrt[4]{2x+1}\)
ĐK \(x\ge0\)
Đặt \(x=a,x+1=b\)
\(PT\Leftrightarrow a^4+b^4=\left(a+b\right)^4\)
<=> 4a3b+6a2b2+4ab3=0
<=> ab(2a2+3ab+2b2)=0
=>ab=0 (vì 2a2+3ab+2b2>0)
=>\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy.............................
giải phương trình (đặt ẩn phụ đưa về hệ thông thường)
\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\frac{1}{\sqrt[4]{2}}\)
Giải phương trình sau bằng cách đặt ẩn phụ :
\(\sqrt{x^2+2x+3}-\sqrt{x^2+3x}=3-x\)
vào câu hỏi tương tự nhé bạn
Giải các phương trình vô tỉ sau bằng phương pháp đặt ẩn phụ:
a)\(\sqrt{x^4+x^2+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3x}\)
b)\(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)