Những câu hỏi liên quan
VH
Xem chi tiết
LL
30 tháng 12 2015 lúc 16:42

4= 16 . 16 chia 12 dư 4 . Vậy thằng cho đề bị KHÙNG

Bình luận (0)
LT
Xem chi tiết
TP
24 tháng 6 2017 lúc 15:54

a) Một số lẻ thì có dạng 2a+1 (a thuộc N). 

Ta có: (2a+1)= 4a2 + 4a +1

4a2 và 4a chia hết cho 4, cho nên 4a2 + 4a +1 chia 4 dư 1 => điều phải chứng minh

b) Tương tự: (2a+1)= 4a2 + 4a +1 = 4a(a+1) +1

Ta thấy a+1 là số chẵn => 4(a+1) chia hết cho 8  => 4a(a+1) +1 chia 8 dư 1 => điều phải chứng minh

Bình luận (0)
DL
24 tháng 6 2017 lúc 15:47

a) Gọi số tự nhiên lẻ là 2x+1.

=>Bình phương của số lẻ là: (2x+1)2=4x2+4x+1=4x(x+1)+1=B(4)+1

=>Chia 4 dư 1.

Bình luận (0)
Xem chi tiết
NT
28 tháng 6 2017 lúc 22:05

  a)gọi   \(2x+1\)  là công thức tổng quát của số nguyên lẻ.  ( x nguyên )

ta có : \(\left(2x+1\right)^2=4x^2+4x+1=4x\left(x+1\right)+1\)

ta thấy \(4x\left(x+1\right)⋮4\)  \(\forall x\)    mà 1 lại ko chia hết cho 4   \(\Rightarrow\left(2x+1\right)^2:4\)dư 1  \(\Rightarrow dpcm\)

Bình luận (0)
HV
Xem chi tiết
NH
5 tháng 8 2017 lúc 8:28

a) Số lẻ c ó dạng \(2k+1\left(k\in N\right)\)

Bình phương của số lẻ là :

\(\left(2k+1\right)^2=4k^2+4k+1\)

\(4k^2+4k⋮4\)

\(\Leftrightarrow4k^2+4k+1\) chia 4 dư 1

\(\Leftrightarrow\) Bình phương của 1 số lẻ chia 4 dư 1

Bình luận (0)
NL
24 tháng 7 2019 lúc 17:57

Chứng minh rằng:

a) Bình phương của một số lẻ chia cho 4 dư 1

Bình phương của một số lẻ có dạng là (2k+1)^2

Ta có:

(2k+1)^2=4k^2+4k+1

Mà 4k^2+4k chia hết cho 4 nên 4k^2+4k+1 chia 4 dư 1.

Hay (2k+1) chia 4 dư 1

b) Bình phương của một số lẻ chia cho 8 dư 1

Bình phương của một số lẻ có dạng là (2k+1)^2

Ta có: (2k+1)^2=4k^2+4k+1

Ta lại có: 4k^2+4k chia hết cho 4

4k^2+4k chia hết cho 2

Suy ra 4k^2+4k chia hết cho 8

vậy 4k^2+4k+1 chia 8 dư 1

hay (2k+1)^2 chia 8 dư 1

Bình luận (0)
HK
Xem chi tiết
NA
Xem chi tiết
H24
17 tháng 11 2016 lúc 20:38

11;12;13;14

Bình luận (0)
PA
Xem chi tiết
NM
Xem chi tiết
HN
7 tháng 9 2017 lúc 20:21

Ta lấy ví dụ:

Số chính phương lẻ là: 9

Số chính phương chẵn là: 4

9 : 4 = 2 ( dư 1 )

4 : 4 = 1

Vậy số chính phương lẻ chia 4 dư 1

Số chính phương chẵn chia hết cho 4

Bình luận (0)
TN
Xem chi tiết
LQ
4 tháng 7 2016 lúc 20:42

số lẻ được viết dưới dạng 2k+ 1

bình phương của số lẻ: (2k+1)2 = 4k2 + 4k + 1

Mà 4k2 + 4k chia hết cho 4

=> 4k+ 4k + 1 chia 4 dư 1

=> bình phương cua 1 số lẻ chia cho 4 dư 1

Bình luận (0)