\(\text{Tìm x biết}:\)
\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
Tìm x biết:
a) \(2x\left(5x-3\right)-\left(2x-1\right)\left(2x+1\right)-8x^2+6x\)
b) \(\left(x^2+2\right)\left(x-1\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
Mastered Ultra Instinct đề là tìm x thế ko có vế phải à???
Giải các phương trình sau:
f. 5 – (x – 6) = 4(3 – 2x)
g. 7 – (2x + 4) = – (x + 4)
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
i. \(\left(x-2^3\right)+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x=2x^3-16\)
<=>\(8x=-16\)
<=>\(x=-2\)
i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)
<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(6x^2-2x-10=0\)
<=>\(3x^2-x-5=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>\(x=\dfrac{1}{5}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)
<=>\(8x=-16\)
<=>x=-2
i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(9x+6=0\)
<=>x=\(\dfrac{-2}{3}\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>
d) \(^{ }4x\left(2x+3\right)-8x\left(x+4\right)\)
e) \(^{ }2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
f) \(^{ }x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(4x\left(2x+3\right)-8x\left(x+4\right)\)
\(=8x^2+12x-8x^2-32x\)
=-20x
e: Ta có: \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
\(=10x^2+4x+6x^2-2x-9x+3\)
\(=16x^2-7x+3\)
f: Ta có: \(x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3+4x^2+4x-x^3-3x^2-3x-1+3x^2-3\)
\(=4x^2+x-4\)
Tìm x biết
1) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
2)\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x+1\right)-33\)
3)\(6x\left(3x+5\right)-2x\left(9x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)-17x^2=0\)
4)\(\left(x-1\right)\left(x+2\right)-\left(x-3\right)+5x-7=0\)
Giúp mình nha. Camon nhiều
len google di ban
mk chua hoc bai nay
a, \(\text{[}\left(x-y\right)^3+3\left(x-y\right)\text{]}:\dfrac{1}{3}\left(x-y\right)\)
b, \(\left(8x^3-27y^3\right):\left(2x-3y\right)\)
c, \(\text{[}5\left(x+2y\right)^6-6\left(x+2y\right)^5\text{]}:2\left(x+2y\right)^4\)
a: \(=\left(x-y\right)^3:\dfrac{1}{3}\left(x-y\right)+3\left(x-y\right):\dfrac{1}{3}\left(x-y\right)\)
=3(x-y)^2+9
b: \(=\dfrac{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}{2x-3y}=4x^2+6xy+9y^2\)
c: \(=\dfrac{5\left(x+2y\right)^6}{2\left(x+2y\right)^4}-\dfrac{6\left(x+2y\right)^5}{2\left(x+2y\right)^4}=\dfrac{5}{2}\left(x+2y\right)^2-3\left(x+2y\right)\)
Tìm nghiệm của các đa thức sau:
a) \(\left(2x-\dfrac{3}{2}\right)\left(\left|x\right|-5\right)\)
b) \(x-8x^4\)
c) \(x^2-\left(4x+x^2\right)-5\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
Tìm x, biết:
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)
\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)
\(\Leftrightarrow-7x+12x=20+2\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\dfrac{22}{5}\)
tick cho mk nha
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)
\(x_1=3;x_2=\dfrac{-11}{10}\)
Tick cho mk nha
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Rightarrow x=\dfrac{43}{42}\)
Tick cho mk nha
Thực hiện phép tính:
a) \(2x.\left(2x^2+3x-1\right)\)
b) \(\left(x+5\right).\left(2x-3\right)\)
c) \(\left(x+1\right)^2-x\left(2+3x\right)\)
d) \(\left(2x^3+x^2-8x+3\right):\left(2x-3\right)\)
b: \(=2x^2-3x+10x-15=2x^2+7x-15\)
tìm x biết:
a) \(8x^3+27=\left(x-1\right)^3+\left(x+4\right)^3\)
b)\(\left(x^2+3x+3\right)^3+\left(x^2-x-1\right)^3-1=\left(2x^2+2x+1\right)^3\)
CỨU MẠNG. CẦN GẤP . MÌNH LIKE
a) \(8x^2+27=\left(x-1\right)^3+\left(x+4\right)^3\)
\(\Leftrightarrow8x^3+27=x^3-2x^2+x-x^2+2x-1+x^3+8x^2+16x+4x^2+32x+64\)
\(\Leftrightarrow8x^3+27=2x^3+9x^2+51x+63\)
\(\Leftrightarrow8x^3+27-2x^3-9x^2-51x-63=0\)
\(\Leftrightarrow6x^3-36-9x^2-51x=0\)
\(\Leftrightarrow3\left(2x^3-12-3x^2-17x\right)=0\)
\(\Leftrightarrow3\left(2x^2+3x-8x-12\right)\left(x+1\right)=0\)
\(\Leftrightarrow3\left(2x^2+3x-8x-12\right)\left(x+1\right)=0\)
\(\Leftrightarrow3\left[x\left(2x+3\right)-4\left(2x+3\right)\right]\left(x+1\right)=0\)
\(\Leftrightarrow3\left(2x+3\right)\left(x-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+3=0\\x-4=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=4\\x=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=4\\x=-1\end{cases}}\)
tớ tưởng áp dụng công thức: \(\left(A+B\right)^3=A^3+B^3+3AB\left(A+B\right)\)
và \(\left(A-B\right)^3=A^3-B^3-3AB\left(A-B\right)\)