tìm GTLN của biểu thức:
1, B=\(\frac{3}{4x^2-4x+5}\)
2, C=\(\frac{x^2-6x+14}{x^2+6x-12}\)
tìm GTLN của biểu thức;
1, B=\(\frac{3}{4x^2-4x+5}\)
2, C=\(\frac{x^2-6x+14}{x^2+6x+12}\)
1, B=\(\frac{3}{4x^2-4x+5}\)
=\(\frac{3}{\left(4x^2-2.2x+4\right)+5-4}\)
=\(\frac{3}{\left(2x-2\right)^2+1}\le\frac{3}{1}=3\)
Để B=3 thì : (2x-2)2=0
\(\Leftrightarrow2x-2=0\)
\(\Leftrightarrow x=1\)
Vậy Max B =3 \(\Leftrightarrow x=1\)
Tìm giá trị lớn nhất của biểu thức:
A= -2x2 +5x-8
B= -x2-y2 + xy+2x+2y
C= \(\frac{3}{4x^2-4x+5}\)
D=\(\frac{x^2-6x+14}{x^2-6x+12}\)
\(A=-2x^2+5x-8\)
\(A=-2\left(x^2-\frac{5}{2}\cdot x+4\right)\)
\(A=-2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}+\frac{39}{16}\right)\)
\(A=-2\left[\left(x-\frac{5}{4}\right)^2+\frac{39}{16}\right]\)
\(A=-2\left(x-\frac{5}{4}\right)^2-\frac{39}{6}\le\frac{-39}{6}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{4}\)
\(B=-x^2-y^2+xy+2x+2y\)
\(2B=-2x^2-2y^2+2xy-4x-4y\)
\(2B=-\left(2x^2+2y^2-2xy+4x+4y\right)\)
\(2B=-\left(x^2-2xy+y^2+x^2+4x+4+y^2+4y+4-8\right)\)
\(2B=-\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2-8\right]\)
\(B=-\frac{\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2}{2}+4\le4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=-2\)
\(C=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
\(D=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}\)
\(=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}=\frac{5}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm giá trị lớn nhất của biểu thức:
a) \(A=\frac{8x^2-1}{4x^2+1}+12\)
b) \(B=\left(\frac{x^3+8}{x^3-8}.\frac{4x^2+8x+16}{x^2-4}-\frac{4x}{x-2}\right):\frac{-16}{x^4-6x^3+12x^2-8x}\)
a) Theo mình thì chỉ min thôi nhé!
\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)
b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(
Tìm x sao cho giá trị của biểu thức =2
a) \(\frac{3x-1}{3x+1}+\frac{x-3}{x+3}\)
b)\(\frac{10}{3}-\frac{4x-1}{4x+12}-\frac{7x+2}{6x+18}\)
a.\(\frac{3x-1}{3x+1}+\frac{x-3}{x+3}=2\)
\(\frac{\left(3x-1\right)\left(x+3\right)+\left(3x+1\right)\left(x-3\right)}{\left(3x+1\right)\left(x+3\right)}=\frac{3x^2+8x-3+3x^2-8x-3}{\left(3x+1\right)\left(x+3\right)}=\frac{6x^2-6}{\left(3x+1\right)\left(x+3\right)}=2\)
\(6x^2-6=2\left(3x^2+10x+3\right)\)
\(6x^2-6=6x^2+20x+6\)
-20x-12=0
x=\(\frac{-3}{5}\)
-timg gtln của C=\(\frac{1}{\sqrt{x^2-4x+5}}\)
-tìm gtln của B=5-\(\sqrt{x^2-6x+14^{ }}\)
Có: \(C=\frac{1}{\sqrt{x^2-4x+5}}\)
\(\Leftrightarrow C=\frac{1}{\sqrt{\left(x-2\right)^2+1}}\)\(\le1\)
Vậy Cmin=1 \(\Leftrightarrow x=2\)
Có: \(B=5-\sqrt{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt{\left(x-3\right)^2+5}\) \(\le5-\sqrt{5}\)
Vậy \(B_{min}=5-\sqrt{5}\Leftrightarrow x=3\)
Tìm GTLN của biểu thức
a) M=-x^2-6x+14
b) N= 9x^2+12x+20
c) P= -x^2 - 4y^2 +4x-4y+3
a) \(M=-\left(x^2+6x+9\right)+23=23-\left(x-3\right)^2\le23\Rightarrow MaxM=23\Leftrightarrow x=3\)
b) \(N=\left(9x^2+12x+4\right)+16=\left(3x+2\right)^2+16\ge16\Leftrightarrow MinN=16\Leftrightarrow x=-\frac{2}{3}\)
c) \(P=-\left(x^2-4x+4\right)-\left(4y^2+4y+1\right)+8=8-\left(x-2\right)^2-\left(2y+1\right)^2\le8\Rightarrow MaxP=8\Leftrightarrow x=2;y=-\frac{1}{2}\)
câu b k tìm đc GTLN chỉ tìm được GTNN thôi nha
câu b mình ghi đề sai,phải là N=-9x^2+12x+20 nha bạn
\(N=-9x^2+12x+20\)
\(=-\left[\left(3x\right)^2-2.3x.2+4+16\right]\)
\(=-\left[\left(3x-2\right)^2+16\right]\)
\(=-\left(3x-2\right)^2-16\le-16\)
Vậy \(N_{max}=-16\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
1. Tìm GTNN của biểu thức :
A = 4x2 - 4x + 5 ; B = 3x2 + 6x - 1
2. Tìm GTLN của biểu thức :
A = 10 + 6x - x2 ; B = 7 - 5x - 2x2
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4