Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DH
Xem chi tiết
PV
6 tháng 6 2018 lúc 21:11

sqrt(x)<x

Bình luận (0)
PV
6 tháng 6 2018 lúc 21:11

sqrt(x)=x voi x=1,x=0

Bình luận (0)
DC
Xem chi tiết
TQ
3 tháng 9 2018 lúc 19:18

Ta có x2≥x với x≥0⇒\(\sqrt{x^2}\ge\sqrt{x}\Rightarrow x\ge\sqrt{x}\)

Bình luận (0)
H24
Xem chi tiết
DQ
Xem chi tiết
H24
24 tháng 7 2019 lúc 17:16

a)  Có \(x+1< x+2\)

\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)

b)  Vì \(\sqrt{x+1}< \sqrt{x+2}\)

\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)

\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)

hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)

Bình luận (0)
H24
Xem chi tiết
TN
11 tháng 8 2018 lúc 20:32

\(\sqrt{x}< x\)

vì \(\left(\sqrt{x}\right)^2=x\)với \(\forall\)\(x\ge0\)

học tốt

Bình luận (0)
LA
11 tháng 8 2018 lúc 20:34

Vì: \(x\ge0\) nên \(\sqrt{x}\ge0\)

+) \(\sqrt{x}=x\Leftrightarrow x=x^2\Leftrightarrow x-x^2=0\Leftrightarrow x\left(1-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

+) \(\sqrt{x}< x\Leftrightarrow x< x^2\Leftrightarrow x-x^2< 0\Leftrightarrow x\left(1-x\right)< 0\Leftrightarrow x>1\)

+) \(\sqrt{x}>x\Leftrightarrow x>x^2\Leftrightarrow x-x^2>0\Leftrightarrow x\left(1-x\right)>0\Leftrightarrow0< x< 1\)

Vậy: Nếu \(x=0\) thì \(x=1\) hoặc \(\sqrt{x}=x\)

        Nếu \(x>1\) thì \(\sqrt{x}< x\)

        Nếu \(0< x< 1\) thì \(\sqrt{x}>x\)

=.= hok tốt!!

Bình luận (0)
QN
Xem chi tiết
HI
6 tháng 10 2018 lúc 21:39

có sự nhầm lẫn gì đó thì phải hoặc ko

căn 31+ căn 17+ căn 3> 11

căn 31+ căn 7 +căn 3> 11

căn 31+ căn 17 +căn 3= căn 51 ko biến đổi được bỏ căn đi thì 51 >11

câu tiếp theo tương tự

Bình luận (0)
BM
6 tháng 10 2018 lúc 21:43

Xét thấy: \(\hept{\begin{cases}31< 36\\7< 9\\3< 4\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{31}< \sqrt{36}=6\\\sqrt{7}< \sqrt{9}=3\\\sqrt{3}< \sqrt{4}=2\end{cases}}} \)

\(\Rightarrow\sqrt{31}+\sqrt{7}+\sqrt{3}< 6+3+2=11\)

Vậy: .......

Bình luận (0)
QN
9 tháng 10 2018 lúc 20:15

căn 17 nha mn

Bình luận (0)
TA
Xem chi tiết
LL
Xem chi tiết
DT
Xem chi tiết
NM
24 tháng 11 2021 lúc 9:43

\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)

Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R

Mà \(2+\sqrt{3}< 3+\sqrt{3}\)

Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)

Bình luận (0)