Những câu hỏi liên quan
H24
Xem chi tiết
PQ
24 tháng 6 2019 lúc 21:00

\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}\)

\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2\sqrt{5}}{5}\)

\(\cot=\frac{1}{\tan}=\frac{1}{\frac{2\sqrt{5}}{5}}=\frac{\sqrt{5}}{2}\)

Bình luận (0)
BH
Xem chi tiết
MP
21 tháng 8 2018 lúc 6:40

bài 1 : ta có : \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(0,6\right)^2=\dfrac{16}{25}\)

\(\Rightarrow cosa=\pm\dfrac{4}{5}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\pm\dfrac{3}{4}\) \(\Rightarrow cotx=\dfrac{1}{tanx}=\pm\dfrac{4}{3}\)

bài 2)

ý 1 : a) ta có : \(\dfrac{1}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=tan^2a+1\left(đpcm\right)\)

b) ta có : \(\dfrac{1}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=1+cot^2a\left(đpcm\right)\)

c) \(cos^4a-sin^4a=\left(sin^2a+cos^2a\right)\left(cos^2a-sin^2a\right)\)

\(=cos^2a-sin^2a=2cos^2a-cos^2a-sin^2a=2cos^2a-1\left(đpcm\right)\)

ý 2 :

ta có : \(tana=2\Rightarrow cota=\dfrac{1}{2}\)

ta có : \(tan^2a+1=\dfrac{1}{cos^2a}\Leftrightarrow cos^2a=\dfrac{1}{tan^2a+1}=\dfrac{1}{5}\)

\(\Rightarrow cosa=\pm\dfrac{1}{\sqrt{5}}\Rightarrow sin^2a=1-cos^2a=\dfrac{4}{5}\) \(\Rightarrow sina=\pm\dfrac{2}{\sqrt{5}}\)

vậy ............................................................................

bài 3 bạn tự luyện tập như bài 2 cho quen nha :)

Bình luận (0)
LD
Xem chi tiết
H24
27 tháng 10 2023 lúc 21:35

Bài `1`

\(\sqrt{4-2\sqrt{3}}-\dfrac{2}{\sqrt{3}+1}+\dfrac{\sqrt{3}-3}{\sqrt{3}-1}\\ =\sqrt{3-2\sqrt{3}+1}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}+1-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}\\ =-\sqrt{3}\)

Bình luận (0)
NT
27 tháng 10 2023 lúc 22:32

2:

a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)

b: B=5

=>\(5\left(\sqrt{x}+3\right)=\sqrt{x}+8\)

=>\(5\sqrt{x}+15=\sqrt{x}+8\)

=>\(4\sqrt{x}=-7\)(loại)

Vậy: \(x\in\varnothing\)

Bình luận (0)
GN
Xem chi tiết
DN
16 tháng 12 2021 lúc 8:18

B1:
a.(-14/39)
b.45 độ
B2:
a.x=(-13/10)
b.
c.0

Bình luận (2)
ND
16 tháng 12 2021 lúc 8:26

Bài 1:

a/\(\dfrac{17}{3}-\dfrac{5}{3}=\dfrac{17-5}{3}=\dfrac{12}{3}\)=4

b/Tam giác ABC có:

góc A+góc B+góc C=180 độ

=>70 độ+65 độ+góc C=180 độ

=>góc C =180 độ-70 độ-65 độ=45 độ

Bài 2:

a/\(x+3\dfrac{1}{2}=\dfrac{11}{5}=>x+\dfrac{7}{2}=\dfrac{11}{5}=>x=\dfrac{11}{5}-\dfrac{7}{2}=\dfrac{-13}{10}\)

c/\(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right):\dfrac{4}{31}+\left(\dfrac{-4}{7}+\dfrac{6}{11}\right):\dfrac{4}{31}\)

=>\(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right).\dfrac{31}{4}+\left(\dfrac{-4}{7}+\dfrac{6}{11}\right).\dfrac{31}{4}\)

=>\(\dfrac{31}{4}.\left(\dfrac{-3}{7}+\dfrac{5}{11}+\dfrac{\left(-4\right)}{7}+\dfrac{6}{11}\right)=\dfrac{31}{4}.0=0\)

Bình luận (1)
MT
Xem chi tiết
DP
Xem chi tiết
XA
6 tháng 10 2021 lúc 15:06

Ko biết làm

Bình luận (0)
NT
6 tháng 10 2021 lúc 15:27

Bài 1: 

\(\cos\alpha=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{4}{3}\)

Bình luận (0)
LM
Xem chi tiết
TD
Xem chi tiết
NT
8 tháng 4 2021 lúc 13:18

a,Ta có  \(x=4-2\sqrt{3}=\sqrt{3}^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)do \(\sqrt{3}-1>0\)

\(\Rightarrow A=\frac{1}{\sqrt{3}-1-1}=\frac{1}{\sqrt{3}-2}\)

b, Với \(x\ge0;x\ne1\)

 \(B=\left(\frac{-3\sqrt{x}}{x\sqrt{x}-1}-\frac{1}{1-\sqrt{x}}\right):\left(1-\frac{x+2}{1+\sqrt{x}+x}\right)\)

\(=\left(\frac{-3\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-2}{x+\sqrt{x}+1}\right)\)

\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=1\)

Vậy biểu thức ko phụ thuộc biến x 

c, Ta có : \(\frac{2A}{B}\)hay \(\frac{2}{\sqrt{x}-1}\)để biểu thức nhận giá trị nguyên 

thì \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}-1\)1-12-2
\(\sqrt{x}\)203-1 
x409vô lí 
Bình luận (0)
 Khách vãng lai đã xóa
LO
13 tháng 4 2021 lúc 12:24
Bình luận (0)
 Khách vãng lai đã xóa
HH
5 tháng 5 2021 lúc 16:23


 

a. Ta có x=4−23=1−2.1.3+3=(1−3)2.

⇒x=|1−3|=3−1.

b. Với x≥0 và x≠1 ta có:

 

Bình luận (0)
 Khách vãng lai đã xóa
MS
Xem chi tiết
H9
29 tháng 10 2023 lúc 10:47

\(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}+\dfrac{3}{\sqrt{3}}\)

\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|1-\sqrt{5}\right|+\dfrac{\left(\sqrt{3}\right)^2}{\sqrt{3}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}-1\right)+\sqrt{3}\)

\(=\sqrt{5}-\sqrt{3}-\sqrt{5}+1+\sqrt{3}\)

\(=1\)

Bình luận (0)