Những câu hỏi liên quan
MN
Xem chi tiết
NT
10 tháng 5 2023 lúc 20:21

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Bình luận (0)
DL
Xem chi tiết
IY
21 tháng 6 2018 lúc 11:51

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

Bình luận (0)
MN
Xem chi tiết
TH
2 tháng 4 2023 lúc 10:37

câu hỏi của đề đâu bạn ơi?

 

Bình luận (1)
H24
2 tháng 4 2023 lúc 10:53

xét ΔABC và ΔMDC ta có

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{DMC}=90^o\left(gt\right)\)

=>ΔABC ∼ ΔMDC(g.g)

Bình luận (0)
H24
2 tháng 4 2023 lúc 10:58

hình vẽ

I B A C D M

Bình luận (0)
PT
Xem chi tiết
TP
Xem chi tiết
NT
21 tháng 3 2023 lúc 14:13

a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

b; AB=AH

DB=DH

=>AD là trung trực của BH

c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC

=>ΔDIC cân tại D

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

e: AD vuông góc BH

BH//IC

=>AD vuông góc IC

Bình luận (0)
MA
Xem chi tiết
PT
Xem chi tiết
67
Xem chi tiết
CD
Xem chi tiết
DH
24 tháng 1 2018 lúc 13:54

Bạn tự vẽ hình nha

a) Vì AB = AC

\(\Rightarrow\) \(\Delta ABC\) cân tại A

\(\Rightarrow\) \(\widehat{B}=\widehat{C}\) (Hai góc kề một đáy)

Xét hai tam giác vuông \(\Delta BMH\) và \(\Delta CMK\) , ta có:

\(\widehat{B}=\widehat{C}\) ( Chứng minh trên)

\(MB=MC\) (M là trung điểm của BC)

\(\Rightarrow\Delta BMH=\Delta CMK\) (cạnh huyền góc nhọn)

b) Tự làm

Bình luận (0)
H9
Xem chi tiết
H24
8 tháng 5 2023 lúc 17:28

`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`

      Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`

    `=>\hat{C}=\hat{A_1}`

Xét `\triangle ABC` và `\triangle HBA` có:

    `{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)

`b)` Ta có: `BC=HB+HC=4+9=13(cm)`

Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao

    `@AH=\sqrt{BH.HC}=6 (cm)`

    `@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`

Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`

   `=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`

`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`

      Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`

   `=>AD.AB=AE.AC`

loading...

Bình luận (3)