Cho xy khác 0 và x^3+y^3+3x^2y^2=x^3y^3.Tính Q=1/x+1/y
Cho xyz khác 0 thỏa mãn: x^3y^3 + y^3z^3 + z^3x^3 = 3x^2y^2z^2
Tính giá trị của biểu thức: M = ( 1+ x/y )( 1 + y/z )( 1 + z/x )
3x²y²z² = x³y³ y³z³ z³x³
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3
Cho A = \(\dfrac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}.\left[1:\dfrac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
B = x - y
Chứng minh đẳng thức A = B
Tính giá trị của A, B tại x = 0; y = 0 và giải thích vì sao A ≠ B
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
a. \(\left\{{}\begin{matrix}x^2-3x+2y=2\\2x^2+y-x=3\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x^2+y^2+xy-3y=4\\2x-3y+xy=3\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}x^2-2y^2-xy-2x+7y-3=0\\x^2+y^2-x+y=0\end{matrix}\right.\)
Cho x,y khác 0.
CMR : \(\frac{2x^2+3y^2}{2x^3+3y^3}+\frac{3x^2+2y^2}{3x^3+2y^3}\le\frac{4}{x+y}\)
Đề kì vậy bạn. Sao vế trái không có \(y\) vậy?
Cho x+y=1x+y=1. Tính :
a) \(A=x^4-xy^3+yx^3-y^4+y^3-x^3-2\)
b) \(B=3x+3y+2x^2y+2xy^2-2xy+5x^3y^2+5x^2y^3-5x^2y^2+3\)
c) \(C=3xy\left(x+y\right)+2x^3y+2x^2y^2-2x^2y+\sqrt{16}-3xy\)
Cho x+ y -2=0 . Tính giá tị các biểu thức sau :
1, A = \(x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
2, B = \(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
3, C = \(x^3+x^2y-2x^2-x^2y+xy^2+2xy+2y+2x-2\)
TOÁN 7
2) Ta có:
\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)
Do \(x+y-2=0\Rightarrow x+y=2\)
\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)
\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)
\(=0+0+3\)
\(=3\)
Vậy \(B=3\)
1) Ta có:
\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(=0+0+0+1\)
\(=1\)
Vậy \(A=1\)
cho biết x+y-2=0
tính a,M=\(x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
b,N=\(x^3-2x^2-xy^2+2xy+2y+2x-2\)
c,P=\(x^4+2x^3y-2x^3+x^2y^2-2x^22y-x\left(x+y\right)\)\(+2x+3\)
Cho \(x+y=1\). Tính :
a) \(A=x^4-xy^3+yx^3-y^4+y^3-x^3-2\)
b) \(B=3x+3y+2x^2y+2xy^2-2xy+5x^3y^2+5x^2y^3-5x^2y^2+3\)
c) \(C=3xy\left(x+y\right)+2x^3y+2x^2y^2-2x^2y+\sqrt{16}-3xy\)
tính giá trị của các đa thức sau biết x+y-2=0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(N=x^3-2x^2-xy^2+2xy+2y+2x-2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)