TH

Cho x+ y -2=0 . Tính giá tị các biểu thức sau :

1, A = \(x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

2, B = \(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

3, C = \(x^3+x^2y-2x^2-x^2y+xy^2+2xy+2y+2x-2\)

     TOÁN 7  

ND
29 tháng 2 2016 lúc 18:16

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

Bình luận (0)
ND
29 tháng 2 2016 lúc 18:11

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
MT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
CB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NQ
Xem chi tiết
NB
Xem chi tiết