Những câu hỏi liên quan
RN
Xem chi tiết
NT
17 tháng 6 2023 lúc 10:26

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)

Bình luận (0)
DC
Xem chi tiết
MA
20 tháng 4 2022 lúc 22:58

a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)

Bình luận (0)
LD
Xem chi tiết
NT
10 tháng 3 2022 lúc 17:38

a, \(\left(x-5\right)\left(x-5+3\right)=0\Leftrightarrow x=5;x=2\)

b, \(-4x=\dfrac{274}{21}\Leftrightarrow x=-\dfrac{137}{42}\)

c, đk x khác - 2 ; 2 

\(x^2-3x+2-x^2-2x=6-7x\Leftrightarrow-5x+2=6-7x\)

\(\Leftrightarrow2x-4=0\Leftrightarrow x=2\left(ktm\right)\)

Vậy pt vô nghiệm 

Bình luận (0)
HN
Xem chi tiết
AP
26 tháng 4 2022 lúc 21:21

a)2.(x+3)-(3+x).(1`+2x)=0\(\Leftrightarrow\)2x+6-3-6x-x-2x\(^2\)=0

\(\Leftrightarrow\)-2x\(^2\)-5x+3=0\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy PT đã cho có tập nghiệm S=\(\left\{-3;\dfrac{1}{2}\right\}\)

b)x\(^2\)-4x+4=9\(\Leftrightarrow\)x\(^2\)-4x+4-9=0\(\Leftrightarrow\)x\(^2\)-4x-5=0

\(\Leftrightarrow\left\{{}\begin{matrix}5-x=0\\1+x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy PT đã cho có tập nghiệm S=\(\left\{-1;5\right\}\)

Bình luận (0)
HN
Xem chi tiết
H24
26 tháng 4 2022 lúc 20:27

\(a,\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\-2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

\(b,\Leftrightarrow\left(x-2\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Bình luận (0)
TH
26 tháng 4 2022 lúc 20:27

a) \(2\left(x+3\right)-\left(x+3\right)\left(1+2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2-1-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\1-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

-Vậy \(S=\left\{-3;\dfrac{1}{2}\right\}\)

b) \(x^2-4x+4=9\)

\(\Leftrightarrow\left(x-2\right)^2-9=0\)

\(\Leftrightarrow\left(x-2-3\right)\left(x-2+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
-Vậy \(S=\left\{5;-1\right\}\)

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 2 2022 lúc 20:51

a: \(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)

=>x=0

b: \(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{x+1}{x-3}=\dfrac{1}{2}\)

\(\Leftrightarrow x^2-4x+3=2x\left(x-3\right)-2\left(x^2-1\right)\)

\(\Leftrightarrow x^2-4x+3=2x^2-6x-2x^2+2=-6x+2\)

\(\Leftrightarrow x^2+2x+1=0\)

=>x=-1(nhận)

Bình luận (0)
 ILoveMath đã xóa
NT
22 tháng 2 2022 lúc 20:55

\(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)

\(\Leftrightarrow x=0\) ( vì \(x^2+2x+5>0;\forall x\)

b.\(\Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\)

\(ĐK:x\ne1;3;4\)

\(\Leftrightarrow\dfrac{x}{\left(x-1\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\)

\(\Leftrightarrow\dfrac{x\left(x-3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-1\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-3x-\left(x^2-3x-x+3\right)=x^2-1\)

\(\Leftrightarrow x^2-3x-x^2+4x-3=x^2-1\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-2\right\}\)

Bình luận (2)
 ILoveMath đã xóa
H24
22 tháng 2 2022 lúc 20:55

\(a,2x^3+4x^2+10x=0\\ \Leftrightarrow2x\left(x^2+2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x^2+2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x^2+2x+1\right)+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2+4=0\left(vô..lí\right)\end{matrix}\right.\)

\(b,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne3\\x\ne4\end{matrix}\right.\\ \dfrac{x^2-4x}{x^2-5x+4}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x}{x-1}-\dfrac{1}{2}-\dfrac{x+1}{x-3}=0\\ \Leftrightarrow\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)}-\dfrac{x^2-4x+3}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2x^2-2}{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-6x-x^2+4x-3-2x^2+2}{2\left(x-1\right)\left(x-3\right)}=0\)

\(\Rightarrow-x^2-2x-1=0\)

\(\Leftrightarrow x^2+2x+1=0\\ \Leftrightarrow\left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\left(tm\right)\)

 

Bình luận (0)
LD
Xem chi tiết
H24
22 tháng 5 2021 lúc 9:54

`a,x(x+3)-(2x-1).(x+30)=0`
`<=>x^2+3x-(2x^2+59x-30)=0`
`<=>x^2+56x-30=0`
`<=>x^2+56x+28^2=28^2+30`
`<=>(x+28)^2=28^2+30`
`<=>x=+-sqrt{28^2+30}-28`
`b,x(x-3)-5(x-3)=0`
`<=>(x-3)(x-5)=0`
`<=>` $\left[ \begin{array}{l}x=3\\x=5\end{array} \right.$
`c)1/(x-1)+5/(x-2)=(3x)/((x-1)(x-2))`
`đk:x ne 1,2`
`pt<=>x-2+5(x-1)=3x`
`<=>x-2+5x-5=3x`
`<=>6x-7=3x`
`<=>3x=7`
`<=>x=7/3`
`d)(x-1)/(x+1)+(x+1)/(x-1)=(4-2x^2)/(x^2-1)`
`đk:x ne +-1`
`pt<=>(x-1)^2+(x+1)^2=4-2x^2`
`<=>2x^2+2=4-2x^2`
`<=>4x^2=2`
`<=>x^2=1/2`
`<=>x=+-sqrt{1/2}`

Bình luận (0)
TL
Xem chi tiết
NT
26 tháng 3 2022 lúc 15:07

a, \(-2x\ge-5\Leftrightarrow x\le\dfrac{5}{2}\)

b, TH1 : \(\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-3\end{matrix}\right.\Leftrightarrow x>1\)

TH2 : \(\left\{{}\begin{matrix}x-1< 0\\x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< -3\end{matrix}\right.\Leftrightarrow x< -3\)

 

Bình luận (0)
MV
Xem chi tiết