Những câu hỏi liên quan
DT
Xem chi tiết
PL
12 tháng 6 2019 lúc 20:10

\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)

\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)

\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)

\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)

\(\Rightarrow x\ge-3\)

Bình luận (0)
PL
12 tháng 6 2019 lúc 20:15

\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)

\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)

Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2

Bình luận (0)
PL
12 tháng 6 2019 lúc 20:22

\(d,\)\(\sqrt{x-2}-\frac{1}{x-5}\)

\(đkxđ\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}xđ\\\frac{1}{x-5}xđ\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-2\ge0\\x-5\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ne5\end{cases}}}\)

Vậy biểu thức xác định \(\Leftrightarrow x\ge2\)và \(x\ne5\)

Bình luận (0)
TT
Xem chi tiết
TT
16 tháng 9 2021 lúc 16:44

Giups mình vs ạ

Bình luận (0)
HP
16 tháng 9 2021 lúc 16:46

a. ĐKXĐ: Mọi x

b. ĐKXĐ: x > \(\dfrac{1}{5}\)

Bình luận (0)
TT
16 tháng 9 2021 lúc 16:50

:))))

Bình luận (1)
H24
Xem chi tiết
NT
24 tháng 10 2021 lúc 21:28

a: ĐKXĐ: \(x\ge\dfrac{5}{2}\)

b: ĐKXĐ: \(x< 673\)

c: ĐKXĐ: x>3

Bình luận (1)
KL
Xem chi tiết
PB
Xem chi tiết
CT
27 tháng 6 2019 lúc 7:37

a)Ta có  2 x + 7  có nghĩa khi  2 x + 7 ≥ 0

2 x   +   7   ≥   0   ⇔   2 x   ≥   - 7 ⇔ x ≥ - 7 2

b ) - 3 x + 4 có nghĩa khi  - 3 x + 4 ≥ 0

- 3 x   +   4   ≥   0   ⇔   - 3 x   ≥   - 4 ⇒ x ⩽ 4 3

Bình luận (0)
TN
Xem chi tiết
NT
23 tháng 9 2021 lúc 20:31

e: ĐKXĐ: \(x\ge\dfrac{5}{2}\)

g: ĐKXĐ: \(x\le-4\)

Bình luận (0)
GB
Xem chi tiết
NM
17 tháng 9 2021 lúc 11:06

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
NM
17 tháng 9 2021 lúc 11:02

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

Bình luận (1)
LL
17 tháng 9 2021 lúc 11:09

Bài 2:

a) \(\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(đk:x\ge1\right)\)

\(\Leftrightarrow2\sqrt{x-1}+3\sqrt{x-2}-5\sqrt{x-1}=7\)

\(\Leftrightarrow0=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

b) \(\sqrt{2x^2-3}=4\left(đk:-\sqrt{\dfrac{3}{2}}\ge x\ge\sqrt{\dfrac{3}{2}}\right)\)

\(\Leftrightarrow2x^2-3=16\)

\(\Leftrightarrow2x^2=19\Leftrightarrow x^2=\dfrac{19}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
DT
Xem chi tiết
KN
12 tháng 6 2019 lúc 21:01

a) \(\sqrt{x+3}+\sqrt{x^2+9}\)

Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)

Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định

\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)

Vậy \(ĐKXĐ:x\ge-3\)

Bình luận (0)
KN
12 tháng 6 2019 lúc 21:03

b) \(\sqrt{\frac{x-1}{x+2}}\)

Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu

\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)

\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)

Vậy \(ĐKXĐ:x>1;x< -2\)

Bình luận (0)
KN
12 tháng 6 2019 lúc 21:07

c) \(\sqrt{x-1}+\frac{1}{x-5}\)

Để biểu thức xác định thì \(x-5\ne0\Leftrightarrow x\ne5\)

Và \(x-1\ge0\Leftrightarrow x\ge1\)

Vậy \(ĐKXĐ:x\ge1;x\ne5\)

Bình luận (0)
NP
Xem chi tiết