A=2+2^2+2^3+...+2^2004
CMR; a/ Achia het cho 6
b/ A chia het cho 30
Viết các biểu thức sau dưới dạng tổng
a, (3+x*y^2)^2
b, (a-b^2)*(a+b^2)
c, (a^2+2*a+3)*(a^2+2*a-3)
d, (a^2+2*a+3)*(a^2-2*a-3)
e, (a^2-2*a+3)*(a^2+2*a-3)
f, (a^2+2*a+3)*(a^2-2*a+3)
g, (-a^2-2*a+3)*(-a^2-2*a+3)
h, (a^2+2*a)*(2*a-a^2)
vì a+b+c=0 nên a=-(b+c)\Rightarrow $a^2$=$(b+c)^2$
tương tự ta có : $b^2$=$(a+c)^2$
$c^2$=$(a+b)^2$
\Rightarrow $\frac{a^2}{a^2-b^2-c^2}$+$\frac{b^2}{b^2-c^2-a^2}$+$\frac{c^2}{c^2-b^2-a^2}$
=$\frac{a^2}{(b+c)^2-b^2-c^2}$+$\frac{b^2}{(a+c)^2-a^2-c^2}$
+$\frac{c^2}{(a+b)^2-a^2-b^2}$
=$\frac{a^2}{2bc}$+$\frac{b^2}{2ac}$+$\frac{c^2}{2ab}$
=$\frac{a^3+b^3+c^3}{2abc}$
vì a+b+c=0 nên a^3+b^3+c^3=3abc(hằng đẳng thức nâng cao)
\Rightarrow $\frac{a^3+b^3+c^3}{2abc}$=$\frac{3}{2}$
1. cho a,b,c thỏa mãn \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{a^2+ac+c^2}=1006\)
tính giá trị của m= \(\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{a^2+ac+c^2}\)
2. cho a+c+b=\(\dfrac{1}{2}\) , \(a^2+b^2+c^2+ab+bc+ac=\dfrac{1}{6}\).
tính p= \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. cho a,b,c khác 0, và \(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)tính \(x^2+y^9+z^{1945}+2017\)
1.cho a, b,c là các số thực dương thỏa mãn a^3 /(a^2+b^2) + b^3/(b^2+c^2) + c^3/(c^2+a^2) >= (a+b+c)/2
2.cho a, b,c là các số thực dương thỏa mãn (a^3 +b^3+c^3)/2abc + (a^2+ b^2)/c^2 + (b^2+c^2)/(a^2+bc) + (c^2+a^2)/b^2+ac) >= 9/2
chứng minh đẳng thức
a. (a-b)^2 = a^2 - 2ab +b^2
b. (a+b)^3= a^3 + 3a^2b+ 3ab^=+ b^3
c. (a-b)^3= a^3 - 3a^2b +3ab^2 -b^2
d. ( a-b)^3= a^3- 3a^2b+ 3ab^2 -b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 -b^3
g. ( a-b) ( a+b) = a^2- b^2
h. ( a+b+c) ( a^2 + b^2 +c^2 - ab- bc -ac )= a^3+ b^3=c^3 -3abc
k.( a+b+c)^2 = a^2 +b^2 + c^2 + 2ab+ 2bc+2ac
m.( x^3+ x^2y+xy^2+ y^2) ( x-y) = x^4 -y^4
n. ( a+b) ( a^3 -ab +b^2) + ( a-b) ( a^2 +ab +b^2)= 2a^3
a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2
b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3
c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3
g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2
Bài 1: CMR
a/ 2*(a^3+ b^3+ c^3- 3abc)=(a+b+c)*((a-b)^2+(b-c)^2+(c-a)^2)
b/ (a+b)*(b+c)*(c+a)+4abc=c*(a+b)^2+a*(b+c)^2+b*(c+a)^2
c/ (a+b+c)^3=a^3+b^3+c^3+3*(a+b)*(b+c)*(c+a)
Bài 2: Cho a+b+c=4m.CMR:
a/ 2ab+ a^2+ b^2- c^2=16m^2- 8mc
b/ (a+b-c/2)^2+(a-b+c/2)^2+(b+c-a/2)^2=a^2+b^2+c^2-4m^2
Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
1.A=2^2+4^2+6^2+...+100^2
2.A=1^2+2^2+3^2+...+99^2
3.A=1^2+2^2+3^2+...+100^2
1)1+a+a^2+.......+a^n
2)1^2+2^2+3^2+4^2+.......+n^2
3)1^3+2^3+3^3+4^3+....+n^3
1.Vt biểu thức dưới dạng tổng
a, (x+y+z)^2
b, (x-y+z)^2
c, (x-y-z)^2
2. Vt biểu thức dưới dạng tích
a, (a^2-2a+3)(a^2+a-3)
b,(a^2+2a+3)(a^2-2a+3)
c, (a^2+2a+3)(a^2+2a-3)
d, (a^2+2a+3)(a^2-2a-3)
e,(-a^2-2a+3)(-a^2-2a+3)
f,(a^2+2a)(2a-a^2)
Các bạn giúp mình vs mình cảm ơn
1:
a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)
b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)
1/cho a + b + c = 0. Rút gọn biểu thức:
\(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-b^2-a^2}\)
2/ cho \(P=\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\\ Q=\dfrac{b^3}{a^2+ab+b^2}+\dfrac{c^3}{b^2+bc+c^2}+\dfrac{a^3}{c^2+ca+a^2}\)
CMR: P = Q
Bài 1:
Từ \(a+b+c=0\) ta có:
\(B=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-b^2-a^2}\)
\(=\frac{a^2}{(-b-c)^2-b^2-c^2}+\frac{b^2}{(-c-a)^2-c^2-a^2}+\frac{c^2}{(-b-a)^2-b^2-a^2}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)
Lại có:
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)
\(=-c^3+3abc+c^3=3abc\)
Do đó \(B=\frac{3abc}{2abc}=\frac{3}{2}\)
Bài 2:
Lấy P-Q ta có:
\(P-Q=\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)\)
\(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)
\(P-Q=\frac{(a-b)(a^2+ab+b^2)}{a^2+ab+b^2}+\frac{(b-c)(b^2+bc+c^2)}{b^2+bc+c^2}+\frac{(c-a)(c^2+ac+a^2)}{c^2+ac+a^2}\)
\(P-Q=(a-b)+(b-c)+(c-a)=0\Rightarrow P=Q\)
Ta có đpcm.