Những câu hỏi liên quan
TK
Xem chi tiết
H24
1 tháng 3 2021 lúc 21:35

Áp dụng BĐT cosi:

`(y-1)+1>=2\sqrt{y-1}`

`=>\sqrt{y-1}<=y/2`

`=>x\sqrt{y-1}<=(xy)/2`

Hoàn toàn tương tự:

`\sqrt{x-1}<=x/2`

`=>y\sqrt{x-1}<=(xy)/2`

`=>x\sqrt{y-1}+y\sqrt{x-1}<=xy`

Dấu "=" xảy ra khi `x=y=2`

Bình luận (1)
KM
Xem chi tiết
TL
15 tháng 5 2015 lúc 15:50

x+y = 2 => y = 2- x

=> x.y = x.(2 - x) = - x2 + 2x 

Xét x.y - 1 = - x2 + 2x  - 1 = (-x2 + x) + (x - 1) = - x.(x - 1) + (x - 1) = (x - 1).(-x + 1) = -(x-1).(x-1) = -(x-1)2 \(\le\) 0 với mọi x

=> xy - 1  \(\le\) 0 <=> x.y \(\le\) 1

Bình luận (0)
TH
Xem chi tiết
MT
1 tháng 10 2015 lúc 15:44

\(\text{Ta có: }x+y=2\Rightarrow x=2-y\text{ }\)

\(\Rightarrow xy=\left(2-y\right).y=2y-y^2=-y^2+2y-1+1\)

\(=-\left(y^2-2y+1\right)+1=-\left(y^2-y-y+1\right)+1\)

\(=-\left[y.\left(y-1\right)-\left(y-1\right)\right]+1=-\left(y-1\right)\left(y-1\right)+1=-\left(y-1\right)^2+1\)

\(\text{Vì }\left(y-1\right)^2\ge0\text{ nên: }-\left(y-1\right)^2\le0\Rightarrow-\left(y-1\right)^2+1\le1\)

\(\text{Vậy }xy\le1\text{ tại }y-1=0\Rightarrow y=1\Rightarrow x=2-1=1\)

Bình luận (0)
MT
1 tháng 10 2015 lúc 15:36

Nguyễn Tuấn Tài ko cần nguyên cũng dc mà

Bình luận (0)
H24
Xem chi tiết
H24
27 tháng 5 2015 lúc 10:12

đặt     x=1 + m              ;         y = 1-m thì x+y=2

ta có xy=(1+m)(1-m) = 1 - \(m^2\)< hoặc = 1( vì m^2 > hoặc = 0)(dấu = <=> x=y=1)

Bình luận (0)
H24
27 tháng 5 2015 lúc 10:22

Vì x + y = 2 --> x =2 - y 
Ta có : xy = (2 - y) y  
= 2y - y2 
= -y2 + 2y -1 + 1 
= -(y - 1)+ 1 
Vì (y - 1)2 > hoặc = 0 --> -(y - 1)2 < hoặc = 0(với mọi y) 
--> -(y - 1)2 + 1 < hoặc = 1 (với mọi y) 
Vậy xy < hoặc = 1

Bình luận (0)
H24
4 tháng 9 2016 lúc 20:43

(x+y)2=x2+y2+2xy . Do x2+y2-2xy=(x-y)> hoặc = 0.  => x2+ y2> hoặc =2xy.  =>4=4xy => xy< hoặc =1 . Dấu "=" sẩy ra <=>x=y=1

Bình luận (0)
CE
Xem chi tiết
DV
27 tháng 5 2015 lúc 11:47

Đặt x = 1 + m ; y = 1 - m thì x + y = 1 + m + 1 - m = 2

Ta có xy = (1 + m) . (1 - m) = 1 . (1 - m) + m . (1 - m) = 1 - m + m - m2 = 1 - m2 \(\le\) 1 (vì m2 \(\ge\) 0).

Vậy suy ra điều phải chứng minh (dấu = xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\) x = y = 1)

Bình luận (0)
TT
27 tháng 5 2015 lúc 11:47

X + y = 1 => ít nhất có1 số dương. 
TH1 : 1 dương , 1 âm => xy < 0 < 1 
TH2 : x > 0, y > 0 
Ta có : x + y >= 2 nhân căn của (x.y) 
Suy ra 2 >= 2 nhân căn của ( x.y ) 
Suy ra 1 >= căn của ( x.y ). 
Vây x.y =< 1

Bình luận (0)
NA
Xem chi tiết
H24
14 tháng 5 2019 lúc 8:34

Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 . Bạn check thử cái cách "Bài này lớp 7 dư sức giải..." nhé! Mình đọc nhiều đề thi hsg để tự luyện thấy lời giải của họ như vậy (không có chỗ dấu "=" xảy ra nha,cái chỗ này mình tự thêm) .Không biết đúng hay sai.Còn mấy cách kia là mình tự làm nhé!

Bình luận (0)
H24
Xem chi tiết
NL
11 tháng 6 2019 lúc 22:57

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{1}{4xy}\)

\(A\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{1}{\left(x+y\right)^2}\)

\(A\ge\frac{4}{1^2}+2+\frac{1}{1^2}=7\)

Dấu "=" khi \(x=y=\frac{1}{2}\)

Bình luận (0)
LD
Xem chi tiết
NL
15 tháng 12 2018 lúc 12:52

Do \(x,y>0\) BĐT tương đương:

\(\dfrac{x^2+2y^2+3}{2}\ge xy+y+1\)

\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh xong

Bình luận (0)
H24
15 tháng 12 2018 lúc 12:54

Vì x,y>0 nên các mẫu thức dương.

BĐT<=>\(2\left(xy+y+1\right)\le x^2+2y^2+3\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\left(1\right)\)

(1) đúng với mọi x,y>0 nên BĐT đã cho được chứng minh.

Dấu "=" xảy ra khi và chỉ khi x=y=1.

Bình luận (0)
NV
Xem chi tiết
HK
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Bình luận (0)
DT
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Bình luận (0)
NV
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Bình luận (0)