Trên nữa đường tròn(O;R) đường kính AB, lấy 2 điểm P, Q sao cho P thuộc cung AQ. Gọi C là giao điểm cảu tia AP và tia BQ; H là giao điểm của hai dây cung AQ và BP.
a)Cm tứ giác CPHQ nội tiếp đường tròn
b) Cm tam giác CBP đồng dạng tam giác HAP
Bài 4: cho nữa đường tròn (O;R) đường kính AB. Trên nữa mặt phẳng bờ là đường thẳng AB chứa nữa đường tròn, kẻ tia Ax vuông góc với AB, trên đó lấy điểm C(C khác A). Kẻ tiếp tuyến CM tới đường tròn (M là tiếp điểm). Qua O kẻ đường thẳng vuông góc với OC cắt đường thẳng CM tại D.
chứng minh tứ giác AOMC nội tiếp. chứng minh BD là tiếp tuyến của đường tròn (O). OC cắt MA tại E, OD cắt MB tại F, Kẻ MH vuông góc AB (H thuộc AB). Chứng minh : HE2 = HF2 có giá trị không đổi khi C chuyển động trên tia Ax. chứng minh ba đường thẳng BC, EF, và MH đồng quy.Cho nữa đường tròn tâm O, đường kính AB. Trên nữa đường tròn lấy hai điểm C, D biết AC = CD = cm và BD = 6cm.Tính bán kính đường tròn
Cho nửa đường tròn (O;\(\dfrac{AB}{2}\)), Ax là tiếp tuyến của nữa đường tròn (Ax và nữa đường tròn cùng phía với AB). C là 1 điểm thuộc nữa đường tròn H là hình chiếu của C trên AB. Đường thẳng qua O và vuông góc với AC cắt Ax tại M. Gọi I là giao điểm của MB và CH. C/m: CI=IH
Cho nữa đường tròn (O) đường kính AB = 2R và điểm C nằm trên nữa đường tròn đó. Kẻ CH vuông góc với AB (H khác O). Hai điểm E,F thay đổi trên đường tròn sao cho góc CHE bằng góc CHF. CM : đường thẳng EF luôn đi qua một điểm cố định
Cho nữa đường tròn (O) đường kính AB = 2R và điểm C nằm trên nữa đường tròn đó. Kẻ CH vuông góc với AB (H khác O). gọi D là điểm bất kì nằm trên đoạn CD, đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E
a, CM tứ giácBHDE nội tiếp
b, CM AD.EC=CD.AC
c, khi điểm C di động trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB) , xác định vị trí của điểm C sao cho chu vi △COH đạt gía trị lớn nhất
a: góc AEB=1/2*sđ cung AB=90 độ
Vì góc DHB+góc DEB=180 độ
nên DHBE nội tiếp
b: Xét ΔADC và ΔACE co
góc ACH=góc AEC(=góc ABC)
góc DAC chung
=>ΔADC đồng dạng với ΔACE
=>DC/EC=AD/AC
=>DC*AC=EC*AD
Cho nữa đường tròn (O) đường kính AB. C là 1 điểm nằm giữa O,A . Đường vuông góc với AB tại C cắt nữa đường tròn tại I. K là một điểm bất kì nằm trên đoạn CI ( K # C và I ) .Tia AK cắt nữa đường tròn (O) tại M . Tia BM cắt tia CI tại D a) Chứng minh các tứ giác ACMD,BCKM nội tiếp đường tròn b) CK.CD=CA.CB C) gọi N là giao điểm của AD với đường tròn (O) . Chứng minh B,K,L thẳng hàng d) tâm đường tròn ngoại tiếp ∆AKD nằm trên 1 đường thẳng cố định khi K di động trên đoạn CI
a: góc ACD=góc AMD=90 độ
=>ACMD nội tiếp
góc BMK+góc BCK=180 độ
=>BMKC nội tiếp
b: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có
góc CAK=góc CDB
=>ΔCAK đồng dạng với ΔCDB
=>CA/CD=CK/BC
=>CA*CB=CD*CK
Cho nửa đường tròn (O;R) đường kính AB cố định .Qua A và B vẽ các tiếp tuyến Ax và By với nữa đường tròn (O). Từ một điểm M tuỳ ý trên nữa đường tròn (M khác A và B) vẽ tiếp tuyến thứ ba với nữa đường tròn cắt các tiếp tuyến Ax và By lần lượt tại H và K a) Chứng minh tứ giác AHMO nội tiếp b) Chứng minh AH + BK =HK c) Chứng minh HO.MB = 2R² d) Xác định vị trí của điểm M trên nữa đường tròn sao cho tứ giác AHKB có chu vi nhỏ nhất
a: Xét tứ giác HAOM có
\(\widehat{HAO}+\widehat{HMO}=90^0+90^0=180^0\)
=>HAOM là tứ giác nội tiếp
b: Xét (O) có
HA,HM là các tiếp tuyến
Do đó: HA=HM và OH là phân giác của góc MOA
Xét (O) có
KM,KB là các tiếp tuyến
Do đó: KM=KB và OK là phân giác của góc MOB
Ta có: HM+MK=HK(M nằm giữa H và K)
mà HM=HA và KM=KB
nên HA+KB=HK
c: Ta có: HA=HM
=>H nằm trên đường trung trực của AM(1)
Ta có: OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra HO là đường trung trực của AM
=>HO\(\perp\)AM
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó; ΔAMB vuông tại M
=>AM\(\perp\)MB
Ta có: HO\(\perp\)AM
AM\(\perp\)MB
Do đó: HO//MB
=>\(\widehat{AOH}=\widehat{ABM}\)
Xét ΔAHO vuông tại A và ΔMAB vuông tại M có
\(\widehat{AOH}=\widehat{MBA}\)
Do đó: ΔAHO đồng dạng với ΔMAB
=>\(\dfrac{HO}{AB}=\dfrac{AO}{MB}\)
=>\(HO\cdot MB=AO\cdot AB=2R^2\)
Cho nữa đường tròn (C): x2+y2=9 nằm trên Ox. Tìm M,N trên Ox và P,O trên nữa đường tròn sao cho MNPQ là hình vuông
cho nữa đường tròn tâm O bán R đường kính AB=2R ax by là các tia vuông góc AB. qua M thay đổi trên nửa đường tròn kẻ tiếp tuyến vuông góc với nữa đường tròn lần lượt cắt Ax, By tai C và D
a) chứng minh:A , C, M, O thuộc một đường tròn
Ta có: \(\widehat{OAC}=90^0\) (giả thiết); \(\widehat{OMC}=90^0\) (tính chất tiếp tuyến)
Tứ giác \(ACMO\) có: \(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)
\(\Rightarrow ACMO\) nội tiếp
Cho nửa đường tròn tâm O đường kính AB = 2R. Vẽ tia tiếp tuyến Ax. Từ điểm M trên Ax kẻ MC (C nằm trên nữa đường tròn và khác A) sao cho MA bằng MC. Nối M với O; MB cắt nửa đường tròn (O) tại D.
a. Chứng minh: AMCO là tứ giác nội tiếp đường tròn. Xác định tâm I của đường tròn.
b. Chứng minh: MC là tiếp tuyến; MC2 = MD.MB.
a: Xét ΔMAO và ΔMCO có
MA=MC
AO=CO
MO chung
=>ΔMAO=ΔMCO
=>góc MCO=90 độ
góc MAO+góc MCO=180 độ
=>MAOC nội tiếp đường tròn đường kính MO
=>I là trung điểm của MO
b: góc MCO=90 độ
=>MC là tiếp tuyến của (O)
Xét ΔMCD và ΔMBC có
góc MCD=góc MBC
góc CMD chung
=>ΔMCD đồng dạng với ΔMBC
=>MC/MB=MD/MC
=>MC^2=MB*MD