Những câu hỏi liên quan
TM
Xem chi tiết
AH
30 tháng 9 2021 lúc 10:21

Lời giải:

Ta có:

$\widehat{ACB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow BC\perp AD$

$\widehat{ABD}=90^0$ (theo tính chất tiếp tuyến)

$\Rightarrow \triangle ABD$ vuông tại $B$

Vậy tam giác $ABD$ vuông tại $B$ có đường cao $BC$. Áp dụng công thức hệ thức lượng:

$BC^2=AC.CD$ (đpcm)

b. 

$BO=BC=OC$ nên $BOC$ là tam giác đều

$\Rightarrow \widehat{CBO}=60^0$

$\Rightarrow \widehat{DAB}=\widehat{CAD}=30^0$

Xét tam giác $ABD$ vuông:

$BC=AB\tan \widehat{DAB}=2R\tan 30^0=8\tan 30^0=\frac{8\sqrt{3}}{3}$ (cm)

 

Bình luận (0)
AH
30 tháng 9 2021 lúc 10:22

Hình vẽ:

Bình luận (0)
TM
Xem chi tiết
MT

ta có: 
gọi H là trung điểm BC
AH=6
sinB=AH/AB=6/10
theo định lí sin: AC/sinB=2R
<=>10/(6/10)=2R=>R=25/3 cm ( ngoại tiếp)
S=1/2.AH.BC=48
p=18
S=pr
=>r=S/p=48/18=2,6 (nội tiếp)

Bình luận (0)
NM
15 tháng 10 2021 lúc 7:40

Gọi AM là đg cao tg ABC thì AM cũng là trung tuyến

Do đó \(BM=\dfrac{1}{2}BC=8\left(cm\right)\)

Áp dụng PTG: \(AM=\sqrt{AB^2-BM^2}=6\left(cm\right)\)

Ta có \(S=p\cdot r\) với p là nửa chu vi, S là diện tích, r là bán kính đg tròn nt tg ABC

Mà \(S=\dfrac{1}{2}AM\cdot BC=48\left(cm^2\right);p=\dfrac{10\cdot2+16}{2}=18\left(cm\right)\)

\(\Rightarrow r=\dfrac{S}{p}=\dfrac{48}{18}\approx2,7\left(cm\right)\)

Bình luận (0)
NM
15 tháng 10 2021 lúc 7:53

\(a,\) Ta có \(AC=CM;MD=DB\) (t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow\dfrac{AC}{BD}=\dfrac{CM}{MD}\)

Mà AC//BD(⊥AB) nên \(\dfrac{AC}{BD}=\dfrac{AN}{ND}\)

Từ đó \(\Rightarrow\dfrac{CM}{DM}=\dfrac{AN}{ND}\Rightarrow AC//MN\) (Ta-lét đảo)

\(b,MN//AC\Rightarrow NI//AC//BD\\ \Rightarrow\dfrac{NI}{BD}=\dfrac{AN}{AD}=\dfrac{CM}{CD}=\dfrac{MN}{BD}\\ \Rightarrow NI=MN\)

Vậy N là trung điểm MI

Bình luận (0)
LK
Xem chi tiết
TD
Xem chi tiết
TR
Xem chi tiết

Bạn tự vẽ hình nha!

c) Các tam giác ACM và BDM cân tại C và D; CO là phân giác góc ACM; DO là phân giác góc BDM => Các đường phân giác này cũng là đường cao => CO vuông góc với AM tại E và DO vuông góc với BM tại F => g. OEM = OFM = 90o.

Mặt khác g.AMB =90o(Góc nội tiếp chắn nửa đường tròn) => Từ giác OEMF là hình chữ nhật => I là trung điểm của OM => IO = OM/2 = R/2 (Không đổi)

Do đó khi M di chuyển thì trung điểm I của EF luôn cách O một khoảng không đổi R/2 => Quỹ tích trung điểm I của EF là nửa đường tròn tâm O bán kính R/2 cùng phía với nửa đường trón tâm O đường kính AB.

 
Bình luận (0)
MP
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
TM
Xem chi tiết
TM
1 tháng 11 2021 lúc 20:59

EM CẦN GẤP CÂU b ẠAA

Bình luận (0)