Cho nửa đường tròn (O;R), đường kính AB, dây MN =R( M thuộc cung AN), các tia AM giao BN tại I, AN giao BM tại K
a, CM I, M, K, N thuộc đường tròn.
b, CM IK vuông góc với AB
c, HA.HB=HI.HK
d, Tìm quỹ tích điểm I, điểm K khi M,N thay đổi trên đường tròn (O)
1/Cho đường tròn (O;k )và 2 đường kính AB, CD vuông góc với nhau. Gọi M là 1 điểm trên cung nhỏ BC .Dây MA cắt, CD tại E a) cm tứ giác oemb nội tiếp b) nếu mb=r CM tia BE là tia phân giác của MBA Tính độ dài dây am theo R Tính diện tích hình giới hạn bởi đây cùng nhỏ AM (Gọi là hình viên phân)
Cho nửa đường tròn đường kính AB và dây MN có độ dài bằng bán kính (M thuộc cung AN, M khác A, N khác B). Các tia AM và BN cắt nhau tại I, các dây AN và BM cắt nhau tại K.
a. Chứng minh rằng: IK vuông góc với AB
b. Chứng minh rằng:AK.AN+BK.BM=AB2
Cho nửa đường tròn (O;R), đường kính BC và điểm A thuộc nửa đường tròn, M là điểm trên cung nhỏ AC, 2 đoạn thẳng cắt nhau tại I, tia BA cắt CM tại D a)CM tứ giác AIMD nội tiếp b)CM AI.AC=BI.IM c)CM góc ADI = nửa góc AOB Mn giúp mình với mai thi giữa kì rồi ạ !!!!!!
Cho đường tròn ( O ; R ) đường kính AB . Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R , từ P kẻ tiếp tuyến tiếp xúc với ( O ) tại M .
1 . Cm : Tứ giác APMO nội tiếp được một đường tròn
2 . Cm : BM // OP
3 . Đường thẳng vuông góc với AB ở O cắt tia BM tại N . Cm : tứ giác OBNP là hình bình hành
4 . Biết AN cắt OP tại K , PM cắt ON tại I ; PN và OM kéo dài cắt nhau tại J .
Cm : I , J , K thẳng hàng
Cho nửa đường tròn đường kính AB và dây MN có độ dài bằng bán kính (M thuộc cung AN, M khác A, N khác B). Các tia AM và BN cắt nhau tại I, các dây AN và BM cắt nhau tại K.
c. Tìm vị trí của dây MN để diện tích tam giác IAB lớn nhất
cho đường tròn O bán kính R đường kính AB. Kẻ đường kính CD vuông góc AB, lấy M thuộc cung nhỏ BC, AM cắt CD tại E. Qua D kẻ tiếp tuyến với đường tròn O cắt đường thẳng BM tại N. Từ B kẻ BP vuông góc với DN
1) chứng minh tứ giác MNDE nội tiếp
2)chứng mình EN//CB
3)chứng minh AM.BN=2R\(^2\)
Cho đường tròn (O;R) có 2 đường kính AB và CD vuông góc với nhau . Gọi M là 1 điển trên bán kính OB sao cho OM = R^2/3 , đường thẳng CM cắt đường tròn (O;R) tại N và cắt đường thẳng BD tại K
a, Chứng minh tứ giác OMND nội tiếp
b, Chứng minh K là trung điểm của BD và KC.KN=R^2/2
c, tính độ dài đoạn thẳng DN theo R
Bài này giúp em ạ !!
Cho tam giác cân ABC nội tiếp đường tròn (O; R). Kẻ đường kính AD cắt BC tại H. Gọi M là một điểm trên cung nhỏ AC. Hạ BK ^ AM tại K. đường thẳng BK cắt CM tại E
a, Chứng mnh bốn điểm A, B, H, J thuộc một đường tròn
b, Chứng minh tam giác MBE cân tại M
c, Tại BE cắt đường tròn (O; R) tại N (N khác B). Tính độ dài cung nhỏ MN theo R. Giả sử A ^ = 40 0