Những câu hỏi liên quan
BH
Xem chi tiết
TD
28 tháng 5 2019 lúc 20:48

Ta có : a + bc = a ( a + b + c ) + bc = ( a + c ) ( a + b )

BĐT cần chứng minh tương đương với :

\(\frac{a\left(a+b+c\right)-bc}{\left(a+c\right)\left(a+b\right)}+\frac{b\left(a+b+c\right)-ca}{\left(b+c\right)\left(b+a\right)}+\frac{c\left(a+b+c\right)-ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{2}\)

\(\left(a^2+ab+ac-bc\right)\left(b+c\right)+\left(ab+b^2+bc-ac\right)\left(a+c\right)+\left(ac+bc+c^2-ab\right)\left(a+b\right)\le\frac{3}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

khai triển ra , ta được :

\(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+6abc\le\frac{3}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)+3abc\)

\(\Rightarrow\frac{-1}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)\le-3abc\)

\(\Rightarrow a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\ge6abc\)( nhân với -2 thì đổi dấu )

\(\Rightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)

\(\Rightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)     

vì BĐT cuối luôn đúng nên BĐT lúc đầu đúng

Dấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)

Bình luận (0)
BL
Xem chi tiết
NT
19 tháng 11 2019 lúc 20:42

a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
19 tháng 11 2019 lúc 20:49

b thiếu đề

Bình luận (0)
 Khách vãng lai đã xóa
BL
19 tháng 11 2019 lúc 12:37

@tth_new, @Nguyễn Việt Lâm, @No choice teen, @Akai Haruma

giúp e vs ạ! Cần gấp

Thanks nhiều

Bình luận (0)
 Khách vãng lai đã xóa
BL
Xem chi tiết
NH
18 tháng 11 2019 lúc 20:54

1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)

\(ab+bc+ca=3\). Do đó \(ab\ge1\)

Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)

\(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)

Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)

\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)

Nên \(a+b+c\ge3\ge3abc\)

Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
18 tháng 11 2019 lúc 21:16

Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được

\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Do đó ta được

\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự ta được

\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)

Cộng theo vế các BĐT trên ta được

\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM

ĐẲng thức xảy ra khi và chỉ khi a = b = c >0

Bình luận (0)
 Khách vãng lai đã xóa
AH
18 tháng 11 2019 lúc 22:38

Bài 2:

Áp dụng BĐT AM-GM:

\(a^2+2b^2+c^2=(a^2+b^2)+(a^2+c^2)\geq 2\sqrt{(a^2+b^2)(a^2+c^2)}\geq 2\sqrt{\frac{(a+b)^2}{2}.\frac{(a+c)^2}{2}}=(a+b)(a+c)\)

\(\Rightarrow \frac{ab^2}{a^2+2b^2+c^2}\leq \frac{ab^2}{(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \sum \frac{ab^2}{(a+b)(a+c)}=\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\)

Ta cần CM: \(\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\leq \frac{a+b+c}{4}\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)[(a+b+c)(ab+bc+ac)-abc]\)

\(\Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2)\leq (a^3b+ab^3)+(bc^3+b^3c)+(ca^3+c^3a)\)

(dễ thấy luôn đúng do theo BĐT AM-GM)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NK
26 tháng 9 2019 lúc 9:10

Bài này mình gặp rất nhiều khó khăn khi biến đổi, và vì biểu thức quá dài nên mình phải dùng ký hiệu \(\Sigma_{sym}\), có thể sẽ gặp phải những sai sót-> sai cả bài, do đó bài làm bên dưới chỉ nêu hướng làm thôi (quy đồng).

Nhân hai vế của BĐT cho \(2\left(ab+bc+ca\right)\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\) BĐT cần chứng minh tương đương:

\(\Leftrightarrow\)\(3\Sigma_{sym}a^3b^3c+\Sigma_{sym}ab^4c^2\ge3\Sigma_{sym}a^5bc+\Sigma_{sym}a^4b^3\)

\(\Leftrightarrow3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)+\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\)

Do \(3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)\ge0\) theo định lí Muirhead.

Do đó ta sẽ chứng minh: \(\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\). Và chịu:(

Bình luận (0)
H24
17 tháng 2 2020 lúc 8:42

Không mất tính tổng quát, ta giả sử c là số nhỏ nhất.

Đặt \(f\left(a;b;c\right)=VP-VT\) và \(t=\frac{a+b}{2}\)

Trước hết ta chứng minh \(f\left(a;b;c\right)\ge f\left(t;t;c\right)\).

Xét hiệu hai vế và nó tương đương ta thấy nó \(\ge0\) do giả sử:

Vậy ta chỉ cần chứng minh \(f\left(t;t;c\right)\ge0\Leftrightarrow\frac{\left(c-t\right)^2\left(3c^2+3ct+2t^2\right)}{2t\left(c+t\right)\left(2c+t\right)\left(c^2+t^2\right)}\ge0\) (đúng)

Vậy ta có đpcm.

P/s: Lần sau cho đề đẹp đẹp tí, kiểu này quy đồng mà không có máy tính thì cực chetme:(

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 4 2020 lúc 13:20

Giả sử $c=\min\{a,b,c\}$. Sau khi quy đồng ta cần chứng minh:

$ \left( a-c \right)  \left( -c+b \right)  \left( {a}^{3}{b}^{2}+3\,{a}
^{3}bc-4\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-{a}^{2}{b}^{2}c+7\,{a}^{2}b{c}
^{2}-7\,{a}^{2}{c}^{3}+3\,a{b}^{3}c+7\,a{b}^{2}{c}^{2}+17\,ab{c}^{3}-4
\,{b}^{3}{c}^{2}-7\,{b}^{2}{c}^{3} \right) +c \left( a-b \right) ^{2}
 \left( 3\,{a}^{3}b+3\,{a}^{2}{b}^{2}+6\,{a}^{2}bc-3\,{a}^{2}{c}^{2}+3
\,a{b}^{3}+6\,a{b}^{2}c-2\,ab{c}^{2}-2\,{c}^{3}a-3\,{b}^{2}{c}^{2}-2\,
{c}^{3}b+7\,{c}^{4} \right) \geqq 0$

Với $c=\min\{a,b,c\}$  thì mấy cụm phía sau rất dễ xử lí (a sẽ gửi cách xử trong tin nhắn).

Done.

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
TP
6 tháng 7 2019 lúc 20:36

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)

\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si :

\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)

Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :

\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)

\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
DD
Xem chi tiết
TN
6 tháng 7 2019 lúc 20:25

a) Ta có BĐT:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)

Khi \(a=b=c\)

Bình luận (0)
DD
6 tháng 7 2019 lúc 20:26

cảm ơn ạ

Bình luận (0)
QD
6 tháng 7 2019 lúc 20:37

câu 1 . Theo bđt côsi ta có \(a^3+b^3\ge ab(a+b)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab(a+b)+abc}=\frac{1}{ab(a+b+c)}=\frac{c}{abc(a+b+c)}\)

tương tự \(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc(a+b+c)}\)\(\frac{1}{a^3+c^3+abc}\le\frac{b}{abc(a+b+c)}\)

Cộng vế theo vế ta có  \(\frac{1}{b^3+c^3+abc}+\frac{1}{b^3+a^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{a+b+c}{abc(a+b+c)}=\frac{1}{abc}\)

\(\RightarrowĐPCM\)

Bình luận (0)
NT
Xem chi tiết
NL
24 tháng 6 2020 lúc 10:35

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Tương tự: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) ; \(\sqrt{\frac{ca}{b+ca}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{a+b}\right)\)

Cộng vế với vế: \(VT\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
KS
Xem chi tiết
KS
6 tháng 7 2016 lúc 21:00

Trả lời hộ mình đi

Bình luận (0)
DN
Xem chi tiết
NL
14 tháng 4 2022 lúc 16:32

Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)

\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)

\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)

Nhân phá và rút gọn 2 vế:

\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)

Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)