Tính giá trị biểu thức : \(\frac{3x^2-4xy}{xy}\)với \(\frac{x}{y}=\frac{2}{3}\)
Rút gọn biểu thức rồi tính giá trị:
a) \(\frac{x^2y\left(y-x\right)+xy^2\left(x-y\right)}{3y^2-3x^2}\) ,với x = -3 ; y =\(\frac{1}{2}\)
b) \(\frac{\left(8x^3-y^3\right)\left(4x^2-y^2\right)}{\left(2x+y\right)\left(4x^2-4xy+y^2\right)}\)với x = 2; y =\(\frac{-1}{2}\)
tính giá trị biểu thức \(\frac{3x^2-2xy-4y^2}{4x^2-xy-y^2}\)nếu \(\frac{x}{y}+\frac{y}{x}=\frac{26}{5}\)
Cho biểu thức \(P=3x^2-5\sqrt{xy}+25y^2\) . Hãy thay \(x=\sqrt{\frac{2}{3}},y=\sqrt{\frac{6}{25}}\) rồi tính giá trị của biểu thức.
\(P=3\cdot\dfrac{2}{3}-5\cdot\sqrt{\dfrac{2}{5}}+25\cdot\dfrac{6}{25}=2+6-\sqrt{10}=8-\sqrt{10}\)
Cho biểu thức \(P=3x^2-5\sqrt{xy}+25y^2\). Hãy thay \(x=\sqrt{\frac{2}{3}},y=\sqrt{\frac{6}{25}}\) rồi tính giá trị của biểu thức.
Thay \(x=\sqrt{\frac{2}{3}};y=\sqrt{\frac{6}{25}}\) vào biểu thức P ta được:
\(P=3\left(\sqrt{\frac{2}{3}}\right)^2-5\sqrt{\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+25\left(\sqrt{\frac{6}{25}}\right)^2\)
\(P=3.\frac{2}{3}-\sqrt{25.\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+25.\frac{6}{25}\)
\(P=2-\sqrt{\sqrt{25^2}.\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+6\)
\(P=8-\sqrt{\sqrt{25^2.\frac{2}{3}.\frac{6}{25}}}\)
\(P=8-\sqrt{\sqrt{100}}\)
\(P=8-\sqrt{10}\)
Bài này cũng dễ
Chỉ cần thay vào là dc mừ
Sao lại vào câu hỏi hay
Cho các số x,y là các số thực thoả mãn: \(\frac{x-y}{x^2+xy}\)+ \(\frac{x+y}{x^2-xy}\)=\(\frac{3x-y}{x^2-y^2}\)
Tính giá trị biểu thức Q= \(\frac{x^3+3y^3}{x^2y+y^2x}\)
Tìm giá trị nhỏ nhất của biểu thức A biết:
A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
A = [1/(x^2 + y^2) + 1/2xy ] + (1/4xy + 4xy) + 5/4xy
Dễ thấy 1/(x^2 + y^2) + 1/2xy >= 4/(x+y)^2 >= 4
1/4xy + 4xy >= 2.căn (1/4xy .4xy) = 2
5/4xy >= 5 ( vì xy <= (x+y)^2/4 <= 1/4 )
Vậy A >= 4 + 2 + 5
hay GTNN của A là 11
Dấu = xảy ra khi cả 3 dấu = trên cùng xảy ra <=> x = y = 1/2
Tính giá trị biểu thức:
A = \(3x^3-2y^3-6x^2y^2+xy\) với x = \(\frac{2}{3}\) ; y = \(\frac{1}{2}\)
B = \(x^2y-y+xy^2-x\) với x = -5 ; y = 2
bạn đặt nhân tử chung là xong bài rồi
1.Rút gọn phân thức
a. \(\frac{x^3-x}{3x+3}\)
b.\(\frac{x^2+4y^2-4xy-4}{2x^2-4xy+4x}\)
2.Rút gọn rồi tính giá trị của biểu thức
A=\(\frac{1}{x^2-x}+\frac{1}{x^2+x+1}+\frac{2x}{1-x^3}\)Tại x=10
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
Bạn có thể giúp mình 2 câu còn lại dc kh ạ
Cho biểu thức P= \(\frac{2}{x}\)- (\(\frac{x^2}{x^2+xy}+\frac{y^2-x^2}{xy}-\frac{y^2}{xy+y^2}\)) . \(\frac{x+y}{x^2+xy+y^2}\)với \(x\ne0;y\ne0;x\ne-y\)
a, Rút gọn biểu thức P
b, Tính giá trị của biểu thức P, biết x,y thỏa mãn đẳng thức: x^2+y^2+10= 2(x-3y)