Những câu hỏi liên quan
LP
Xem chi tiết
H24
Xem chi tiết
NL
30 tháng 12 2021 lúc 23:59

\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)

\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)

Bình luận (2)
PB
Xem chi tiết
CT
28 tháng 6 2018 lúc 10:44

Bình luận (0)
HT
Xem chi tiết
TH
12 tháng 3 2021 lúc 19:09

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5}{16}\left(2x+y\right)\ge2\sqrt{\dfrac{3}{16}.3}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\).

Đẳng thức xảy ra khi x = 1; y = 2.

Bình luận (0)
NL
12 tháng 3 2021 lúc 19:11

\(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(M=\dfrac{3\left(2x+y\right)}{16}+\dfrac{3}{2x+y}+\dfrac{5\left(2x+y\right)}{16}\ge2\sqrt{\dfrac{9\left(2x+y\right)}{16\left(2x+y\right)}}+\dfrac{5}{16}.2\sqrt{2xy}=\dfrac{11}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

Bình luận (0)
GD
12 tháng 3 2021 lúc 19:12

Ta có: \(M=\dfrac{2x+y}{xy}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)

Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)

Dấu '=' xảy ra <=> \(\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)

Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)

Dấu '=' xảy ra <=> 2x=y và xy=2

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)

Dấu '=' xảy ra <=> x=1, y=2

Vậy GTNN của M là 11/4 <=> x=1;y=2

Bình luận (0)
H24
Xem chi tiết
GD
14 tháng 3 2021 lúc 6:56

Ta có:

\(M=\dfrac{2x+y}{xx}+\dfrac{3}{2x+y}=\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\)

\(=\left(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\right)+\dfrac{5}{8}\dfrac{2x+y}{2}\)

Có: \(\dfrac{3}{8}\dfrac{2x+y}{2}+\dfrac{3}{2x+y}\ge2\sqrt{\dfrac{3}{8}\dfrac{2x+y}{2}\dfrac{3}{2x+y}}=\dfrac{3}{2}\)

Dấu '=' xảy ra \(\Leftrightarrow\dfrac{3}{8}\dfrac{2x+y}{2}=\dfrac{3}{2x+y}\)

Có: \(\dfrac{5}{8}\dfrac{2x+y}{2}\ge\dfrac{5}{8}\sqrt{2xy}=\dfrac{5}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow2x=y,xy=2\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{5}{4}=\dfrac{11}{4}\)

Dấu '=' xảy ra \(\Leftrightarrow x=1,y=2\)

Vậy GTNN của M là \(\dfrac{11}{4}\Leftrightarrow x=1,y=2\)

Bình luận (1)
TA
Xem chi tiết
TP
Xem chi tiết
GV
18 tháng 5 2018 lúc 22:16

Với a>0,b>0a>0,b>0 ta luôn có a+b≥2ab−−√a+b≥2ab

M = x2+y2xy=xy+yx=3xy+(x4y+yx)x2+y2xy=xy+yx=3xy+(x4y+yx)

Ta có: (x4y+yx)≥2x4y⋅yx−−−−−−√=1(x4y+yx)≥2x4y⋅yx=1

Mặt khác: x≥2yx≥2y ⇒3x4y≥32⇒3x4y≥32

Do đó M≥52M≥52 . Dâu ''='' xảy ra khi x=2yx=2y

Vậy giá trị nhỏ nhất của M là 5252 ⇔x=2y

Bình luận (0)
VN
Xem chi tiết
NL
17 tháng 8 2021 lúc 22:04

\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)

\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)

\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)

Bình luận (0)
H24
Xem chi tiết