tìm x
3(2x-3)+2(2-x)=-3
tìm x biêt:
(x+2)^3-(2x+3)^2+(2x+3)(2x-3)=(x-2)(x^2+2x+4)-6x(x+2)
( x + 2 )3 - ( 2x + 3 )2 + ( 2x + 3 )( 2x - 3 ) = ( x - 2 )( x2 + 2x + 4 ) - 6x( x + 2 )
⇔ x3 + 6x2 + 12x + 8 - ( 4x2 + 12x + 9 ) + 4x2 - 9 = x3 - 8 - 6x2 - 12x
⇔ x3 + 10x2 + 12x - 1 - 4x2 - 12x - 9 = x3 - 6x2 - 12x - 8
⇔ x3 + 6x2 - 10 = x3 - 6x2 - 12x - 8
⇔ x3 + 6x2 - 10 - x3 + 6x2 + 12x + 8 = 0
⇔ 12x2 + 12x - 2 = 0
⇔ 2( 6x2 + 6x - 1 ) = 0
⇔ 6x2 + 6x - 1 = 0 (*)
Δ = b2 - 4ac = 62 - 4.6.(-1) = 60
Δ > 0 nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+\sqrt{60}}{12}=\frac{-3+\sqrt{15}}{6}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-\sqrt{60}}{12}=\frac{-3-\sqrt{15}}{6}\end{cases}}\)
Vậy ...
Tìm x Toán đại 8 Hằng đẳng thức đáng nhớ?
Tìm x:
1. (x-1)^3+3.(x-3)^2-(x+2).(x^2-2x+4) = (x+2)^3-(x-3).(x^2+9)-6x^2+5
2.(3+2x)^3-(6x-1).(6x+1) = (2x-1)^3+(x+4)^2-x^3+(x+1).(x^2+x+1)
1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3)
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27
<=> - 3x^2 - 18x - 22 = 0
<=> 3x^2 + 18x + 22 = 0
Nửa chu vi mảnh đất là:
120 : 2 = 60 (m)
Chiều dài hơn chiều rộng là:
5 + 5 = 10 (m)
Chiều rộng là:
( 60 - 10 ) : 2 = 25 (m)
Chiều dài là:
25 + 10 = 35 (m)
Diện tích là:
25 35 = 875 ( )
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
tìm x : a) (x + 1)^3 + (3 - 2)^3 = 2x^3 + 2(2x - 1)^2 - 9
b) (3x^3+24) : (x+2) + (2x^3−54) : (x^2+3x+9) = 6
a: \(\left(x+1\right)^3+\left(x-2\right)^3=2x^3+2\left(2x-1\right)^2-9\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-6x^2+12x-8=2x^3+2\left(4x^2-4x+1\right)-9\)
\(\Leftrightarrow2x^3-3x^2+15x-7=2x^3+8x^2-8x-7\)
\(\Leftrightarrow-11x^2+23x=0\)
\(\Leftrightarrow x\left(-11x+23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{11}\end{matrix}\right.\)
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
1, Tìm \(x,y\in Z\): \(xy+\dfrac{x^3+y^3}{3}=2007\)
2, Tìm \(x,y\in Z:19x^2+28y^2=729\)
3, Tìm \(x\in Z:x^4+2x^3+2x^2+x+3\) là SCP
Tìm x biết (x^2+3x+3)^3+(x^2-x-1)^3+(-2x^2-2x-1)^3=1
Đặt x2 + 3x + 3 = a ; x2 - x - 1 = b ; -2x2 - 2x - 1 = c ; -1 = d
Ta nhận thấy a3 + b3 + c3 + d3 = 0 (1)
và a + b + c + d = 0
Khi đó ta có (1) <=> (a + b)3 + (c + d)3 - 3ab(a + b) - 3cd(c + d) = 0
<=> ab(a + b) + cd(c + d) = 0
<=> (a + b)(ab - cd) = 0
<=> \(\left[{}\begin{matrix}a=-b\\ab=cd\end{matrix}\right.\)
Với a = -b ta được x2 + 3x + 3 = -x2 + x + 1
<=> x2 + x + 1 = 0
<=> \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)
=> Phương trình vô nghiệm
Với ab = cd
\(\Leftrightarrow\left(x^2+3x+3\right).\left(x^2-x-1\right)=2x^2+2x+1\)
\(\Leftrightarrow\) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^4+2x^3+x^2\right)-\left(4x^2+8x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x+2\right).\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2.\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
Tìm x biết: (x^2+2x-3)^3+(x^2-4x-1)^3-(2x^2-2x-4)^3=0
TÌM X
a. 3.(x^2-x+2)-x.(2+3x)=0
b. (x-1)^2 + (x-1)(x+2)=0
c. 2x^3 +3x^2+2x+3=0
d. 2x^2+x=6
\(a,\Rightarrow3x^2-3x+6-2x-3x^2=0\\ \Rightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\\ b,\Rightarrow\left(x-1\right)\left(x-1+x+2\right)=0\\ \Rightarrow\left(x-2\right)\left(2x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\\ c,\Rightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\\ \Rightarrow\left(x^2+1\right)\left(2x+3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\2x+3=0\end{matrix}\right.\\ \Rightarrow x=-\dfrac{3}{2}\\ d,\Rightarrow2x^2+x-6=0\\ \Rightarrow2x^2+4x-3x-6=0\\ \Rightarrow2x\left(x+2\right)-3\left(x+2\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
bài 3: tìm x , biết:
a)(x+3).(2x-1)-(x-3).(x+1)=0
b)(x+4).(2x-3)-3.(x-2).(x+2)=0
c)x.(x-5).(x+5)-(x+2).(x2-2x+4)=17
a) \(\left(x+3\right)\left(2x-1\right)-\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow2x^2+5x-3-x^2+2x+3=0\)
\(\Leftrightarrow x^2+7x=0\Leftrightarrow x\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
b) \(\left(x+4\right)\left(2x-3\right)-3\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow2x^2+5x-12-3x^2+12=0\)
\(\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)