Những câu hỏi liên quan
H24
Xem chi tiết
TH
1 tháng 6 2021 lúc 7:12

Áp dụng bđt AM - GM ta có \(\sqrt{\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}+1\right)=\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{2a\left(b+c\right)}\)

\(\Rightarrow\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}\ge\dfrac{2\sqrt{2}a\left(b+c\right)}{\left(a+b+c\right)^2}\).

Tương tự,...

Cộng vế với vế ta có \(\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b\left(c+a\right)}{b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c\left(a+b\right)}{c^2+\left(a+b\right)^2}}\ge\dfrac{4\sqrt{2}\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\). (*)

Mặt khác do a, b, c là độ dài ba cạnh của 1 tam giác nên \(a\left(b+c-a\right)+b\left(c+a-b\right)+c\left(a+b-c\right)>0\Rightarrow2\left(ab+bc+ca\right)\ge a^2+b^2+c^2\Rightarrow4\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\). (**)

Từ (*) và (**) ta có đpcm.

 

Bình luận (0)
HM
Xem chi tiết
DM
22 tháng 7 2016 lúc 14:12

Dễ thấy : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\) 

Tương tự :  \(b+c\le\sqrt{2\left(b^2+c^2\right)}\),  \(c+a\le\sqrt{2\left(c^2+a^2\right)}\)

=>      \(2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Bình luận (0)
TT
Xem chi tiết
HT
Xem chi tiết
NL
21 tháng 8 2021 lúc 12:05

\(p+q=1\Rightarrow q=1-p\)

BĐT cần c/m trở thành:

\(pa^2+\left(1-p\right)b^2-p\left(1-p\right)c^2>0\)

\(\Leftrightarrow p^2c^2+\left(a^2-b^2-c^2\right)p+b^2>0\) (1)

\(\Delta=\left(a^2-b^2-c^2\right)^2-4b^2c^2=\left(a^2-b^2-c^2+2bc\right)\left(a^2-b^2-c^2-2bc\right)\)

\(=\left(a^2-\left(b-c\right)^2\right)\left(a^2-\left(b+c\right)^2\right)\)

\(=\left(a+c-b\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)< 0\) theo BĐT tam giác

\(\Rightarrow\) (1) luôn đúng

Bình luận (1)
NL
21 tháng 8 2021 lúc 18:44

Ko xài delta thì biến đổi tương đương (1) xuống bằng cách thêm bớt là được:

\(\left(1\right)\Leftrightarrow p^2c^2+2.\dfrac{a^2-b^2-c^2}{2c}.pc+\left(\dfrac{a^2-b^2-c^2}{2c}\right)^2+b^2-\left(\dfrac{a^2-b^2-c^2}{2c}\right)^2>0\)

\(\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{4b^2c^2-\left(a^2-b^2-c^2\right)^2}{4c^2}>0\)

\(\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left(2bc+a^2-b^2-c^2\right)\left(2bc-a^2+b^2+c^2\right)}{4c^2}>0\)

\(\Leftrightarrow\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]}{4c^2}>0\)

\(\Leftrightarrow\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left(a+b-c\right)\left(a+c-b\right)\left(a+b+c\right)\left(b+c-a\right)}{4c^2}>0\) (luôn đúng theo BĐT tam giác)

Bình luận (0)
NQ
Xem chi tiết
CT
Xem chi tiết
NT
15 tháng 3 2016 lúc 21:33

mình cm cuối cùng ra 1/2(a+b-c)((a-b)^2+(a+c)^2+(b+c)^2)>0(vìa,b,c là ba cạnh của tam giác)

Bình luận (0)
DB
Xem chi tiết

Sửa lại đề : \(A=\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)

Chứng minh :

Đặt \(\hept{\begin{cases}x=b+c-a\\y=c+a-b\\z=a+b-c\end{cases}}\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác 

nên \(x,y,z>0\)

Khi đó : \(\hept{\begin{cases}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{a+b}{2}\end{cases}}\)

Ta có bất đẳng thức mới theo ẩn x,y,z :

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)\ge3\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)\ge3\)

Ta chứng minh bất đẳng thức phụ : 

\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)

Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))

Áp dụng ,ta được : 

\(\frac{1}{2}.2+\frac{1}{2}.2+\frac{1}{2}.2\ge3\)

\(\Leftrightarrow3\ge3\)(đúng)

Vậy bất đẳng thức được chứng minh 

Bình luận (0)
 Khách vãng lai đã xóa
NT
17 tháng 2 2021 lúc 20:15

Đặt \(b+c-a=x;a+c-b=y;a+b-c=z\)

Khi đó \(x;y;z>0\)và \(a=\frac{x+y}{2};b=\frac{x+z}{2};c=\frac{y+z}{2}\)

\(VT=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{1}{2}\left(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\right)\)

\(=\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}+\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}\right)=\frac{1}{2}\left(\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}+\frac{y}{x}+\frac{x}{y}\right)\)

AM - GM cho từng cặp số trên : \(VT\ge\frac{1}{2}\left(2+2+2\right)=3\)

Dấu ''='' xảy ra <=> \(x=y=z\Leftrightarrow a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
H24
1 tháng 9 2023 lúc 14:03

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:

ama + bmb + cmc ≥ (ma + mb + mc)²/3

Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:

ama + bmb + cmc ≥ (3/2(a + b + c))²/3

Simplifying the expression, we get:

ama + bmb + cmc ≥ 3/4(a + b + c)²

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.

Bình luận (1)
NA
2 tháng 7 2024 lúc 8:54

                                                                         Nguyễn Văn A                                                                                                         

Bình luận (0)
DT
Xem chi tiết
BN
20 tháng 6 2016 lúc 17:45

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

Bình luận (0)
KC
Xem chi tiết
DM
18 tháng 7 2015 lúc 15:06

A=4a^2b^2-(a^2+b^2-c^2)^2

=(2ab)^2-(a^2+b^2-c^2)^2

=(a^2+b^2-c^2+2ab)[(2ab-a^2-b^2+c^2)]

=[(a+b)^2-c^2]{[-[(a+b)^2-c^2]}

=-[(a+b)^2-c^2)]^2

Theo bđt tam giác ta có a+b>c=>(a+b)^2-c^2>0 => -[(a+b)^2-c^2]<0. Vậy a<0

Bình luận (0)