Những câu hỏi liên quan
NA
Xem chi tiết
H24
Xem chi tiết
NA
31 tháng 3 2017 lúc 20:34

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)

    \(=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\) 

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

Bình luận (0)
HQ
31 tháng 3 2017 lúc 20:42

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)

\(\Rightarrow1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\frac{1}{27}\ge xyz\)

Ta có  \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 ) 

Xét  \(3\sqrt[3]{\frac{1}{64xyz}}\)

Ta có  \(\frac{1}{27}\ge xyz\)

\(\Rightarrow\frac{64}{27}\ge64xyz\)

\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)

\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 ) 

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)

Vậy  \(M_{min}=\frac{9}{4}\)

Bình luận (0)
TM
31 tháng 3 2017 lúc 22:15

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)

Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)

=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)

Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)

Bình luận (0)
DN
Xem chi tiết
DN
Xem chi tiết
DH
Xem chi tiết
NL
28 tháng 1 2019 lúc 20:47

Áp dụng \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

Ta có \(P=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\)

\(\Rightarrow P=1-3x^2y^2\ge1-3\dfrac{\left(x^2+y^2\right)^2}{4}=\dfrac{1}{4}\)

\(\Rightarrow P_{min}=\dfrac{1}{4}\) khi \(x^2=y^2=\dfrac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
YY
26 tháng 5 2018 lúc 22:16

\(P=\frac{xy}{x+y+2}=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2\left(x+y+2\right)}=\frac{\left(x+y\right)^2-4}{2\left(x+y+2\right)}\)

\(=\frac{\left(x+y+2\right)\left(x+y-2\right)}{2\left(x+y+2\right)}=\frac{x+y-2}{2}\)

mặt khác ta có :

\(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2\cdot4}=2\sqrt{2}\)

\(P\le\frac{2\sqrt{2}-2}{2}=\sqrt{2}-1\)

dấu băng xảy ra khi \(x=y=\sqrt{2}\)

Bình luận (0)
LH
Xem chi tiết
H24
9 tháng 9 2018 lúc 17:14

Bạn kham khảo tại link:

tìm Min ( x^2 + y^2 ) / xy đk x>= 2y; x,y dương? | Yahoo Hỏi & Đáp

Bình luận (0)
AN
10 tháng 9 2018 lúc 8:52

Tìm Min:

\(x=x^2+y^2-y\)

\(\Rightarrow B=\left(x^2+y^2-y\right)-y=x^2+\left(y^2-2y+1\right)-1=x^2+\left(y-1\right)^2-1\ge-1\)

Tìm Max:

\(y=x^2+y^2-x\)

\(\Rightarrow B=x-\left(x^2+y^2-x\right)=-y^2-\left(x^2-2x+1\right)+1=-y^2-\left(x-1\right)^2+1\le1\) 

Bình luận (0)
NT
Xem chi tiết
TD
2 tháng 9 2015 lúc 10:18

mình biết làm nhưng dài quá bạn tra trên google là đc

Bình luận (0)
LC
Xem chi tiết
AN
19 tháng 10 2016 lúc 18:04

Cái này làm gì có GTLN mà tìm

Bình luận (0)