gpt
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-x^2-2x\)
GPT: \(\sqrt{3x^2}+6x+7+\)\(\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Tìm x:
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)
\(VP=5-\left(x+1\right)^2\le5\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left(x+1\right)^2=0\Leftrightarrow x=-1\)
giải phương trình
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
ĐKXĐ: \(x\in R\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)
=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)
=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>
\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)
=>\(\left(x+1\right)^2=0\)
=>x+1=0
=>x=-1(nhận)
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
GPT: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(pt\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}+\left(x+1\right)^2=6\)
Mà \(\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
\(\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{16}=4\)
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}+\left(x+1\right)^2\ge6\) với mọi x thuộc R.
Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Kết luận: \(x=-1.\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Ta có : VT = \(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)
VP=5-(x+1)^2 \(\le\) 5
Đẳng thức xảy ra khi hai vế cùng bằng 5
Khi đó (x+1)^2 =0
Suy ra x=-1
Giải phương trình: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=-x^2-2x+4\)
Trước hết ta xét xem \(f\left(x\right)=-x^2-2x+4\) là hàm số đồng biến hay nghịch biến.Xét \(x_1< x_2< -1\), khi đó : \(f\left(x_1\right)-f\left(x_2\right)=-x_1^2-2x_1+4+x_2^2+2x_2-4=\left(x_2-x_1\right)\left(x_2+x_1+2\right)< 0\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\). Vậy f(x) đồng biến với mọi \(x< -1\)
Tương tự ta chứng minh được :
f(x) nghịch biến với mọi x > -1\(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) đồng biến với mọi x > -1\(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) nghịch biến với mọi x < -1+ Với x = -1 thì VT = VP => là nghiệm của pt trên
+ Với x < -1 thì do \(f'\left(x\right)\) nghịch biến nên VT > 5 , \(f\left(x\right)\) đồng biến nên VP < 5 => vô lí
+ Với x > -1 thì do \(f'\left(x\right)\) đồng biến nên VT > 5 , \(f\left(x\right)\)nghịch biến nên VP < 5 => vô lí
Vậy x = -1 là nghiệm duy nhất của phương trình.
Ta có
\(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge2\)
\(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge3\)
4 - 2x - x2 = 5 - (x + 1)2 \(\le5\)
Ta có VT \(\ge5\);VP \(\le\)5
Nên dấu bằng xảy ra khi x = - 1
Ta có : √3x2+6x+7+√5x2+10x+14=−x2−2x+4
Trước hết ta xét xem ƒ (x)=−x2−2x+4 là hàm số đồng biến hay nghịch biến.Xét x1<x2<−1, khi đó : ƒ (x1)−ƒ (x2)=−x12−2x1+4+x22+2x2−4=(x2−x1)(x2+x1+2)<0
⇒ƒ (x1)<ƒ (x2). Vậy f(x) đồng biến với mọi x<−1
Tương tự ta chứng minh được :
f(x) nghịch biến với mọi x > -1ƒ '(x)=√3x2+6x+7+√5x2+10x+14 đồng biến với mọi x > -1ƒ '(x)=√3x2+6x+7+√5x2+10x+14 nghịch biến với mọi x < -1+ Với x = -1 thì VT = VP => là nghiệm của pt trên
+ Với x < -1 thì do ƒ '(x) nghịch biến nên VT > 5 , ƒ (x) đồng biến nên VP < 5 => vô lí
+ Với x > -1 thì do ƒ '(x) đồng biến nên VT > 5 , ƒ (x)nghịch biến nên VP < 5 => vô lí
Vậy x = -1 là nghiệm duy nhất của phương trình.
Tìm x biết:
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Ta có: \(VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\)
\(=\sqrt{3\left(x^2+2x+1\right)+3}+\sqrt{5\left(x^2+2x+1\right)+9}\)
\(\ge\sqrt{4}+\sqrt{9}=2+\sqrt{9}\)
Mặt khác: \(VP=4-2x-x^2=-\left(x^2+2x+1\right)+5=5-\left(x+1\right)^2\le5\)
Hai vế của phương trình bằng 5
<=> x + 1 = 0
<=> x = -1
Vậy x = - 1 là nghiệm của phương trình
P/s: Đây là cách giải của mình, mong các bạn góp ý. Cảm ơn
tại sao VT \(\ge\sqrt{4}+\sqrt{9}\)???????