Những câu hỏi liên quan
MH
Xem chi tiết
H24
2 tháng 9 2023 lúc 17:16

Để tìm cặp số nguyên (x, y) thỏa mãn phương trình x^2 + xy = 6x - 5y - 8, chúng ta có thể sử dụng phương pháp giải đồng dư.

Đầu tiên, ta sẽ chuyển phương trình về dạng tương đương: x^2 + xy - 6x + 5y + 8 = 0.

Tiếp theo, ta sẽ tìm các giá trị của x sao cho đa thức trên là một đa thức bậc hai trong y. Để làm điều này, ta sẽ sử dụng công thức giải đa thức bậc hai:

y = (-b ± √(b^2 - 4ac))/(2a)

Ở đây, a = 1, b = x - 6 và c = x^2 - 5x - 8. Thay các giá trị này vào công thức, ta có:

y = (-(x - 6) ± √((x - 6)^2 - 4(x^2 - 5x - 8)))/(2(1))

y = (-x + 6 ± √(x^2 - 12x + 36 - 4x^2 + 20x + 32))/(2)

y = (-x + 6 ± √(-3x^2 + 8x + 68))/(2)

Bây giờ, ta sẽ kiểm tra các giá trị của x từ -100 đến 100 (hoặc bất kỳ phạm vi nào khác mà bạn muốn) và tìm các giá trị tương ứng của y để xem có cặp số nguyên (x, y) nào thỏa mãn phương trình ban đầu không.

Chú ý rằng trong phương trình ban đầu, ta chỉ quan tâm đến các giá trị nguyên của x và y. Do đó, chúng ta có thể sử dụng một vòng lặp để kiểm tra các giá trị này.

Dưới đây là một ví dụ về mã Python để tìm các cặp số nguyên (x, y) thỏa mãn phương trình:

 for x in range(-100, 101): discriminant = -3*x**2 + 8*x + 68 if discriminant >= 0 and discriminant % 4 == 0: y1 = (-x + 6 + discriminant**0.5) / 2 y2 = (-x + 6 - discriminant**0.5) / 2 if y1.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y1)})") if y2.is_integer(): print(f"Cặp số nguyên thỏa mãn: ({x}, {int(y2)})")

Kết quả sẽ hiển thị các cặp số nguyên (x, y) thỏa mãn phương trình ban đầu.

Bình luận (0)
NT
Xem chi tiết
TH
Xem chi tiết
TP
5 tháng 4 2017 lúc 5:54

tớ không biết

Bình luận (0)
TH
5 tháng 4 2017 lúc 19:43

cj lậy chú

nhây vừa thoi

Bình luận (0)
VN
Xem chi tiết
NL
20 tháng 8 2021 lúc 21:29

\(\Leftrightarrow2xy-6x-5y=18\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Phương trình ước số cơ bản

Bình luận (0)
MP
Xem chi tiết
LC
25 tháng 9 2019 lúc 21:33

Ta có: \(6x+5y+18=2xy\)

\(\Leftrightarrow6x+5y-2xy=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)

\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)

\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)

Dễ rồi

Bình luận (0)
NT
Xem chi tiết
CG
26 tháng 1 2018 lúc 13:06

xy - x = 7 - 5y

=> xy - x + 5y = 7

=> ( xy + x ) + 5y = 7

=> x ( y + 1 ) + 5 ( y + 1 ) = 7

=> y + 1 . ( x + 5 ) = 7 = 1 . 7 = 7 . 1 = ( - 1 ) . ( - 7 ) = ( - 7 ) . ( - 1 )

TH1 :

y + 1 = 1 và x + 5 = 7

=> y  = 2 và x       = 2

TH2 :

y + 1 = 7 và x + 5 = 1

=> y  = 6 và x       = - 4

TH3 : 

 y + 1 = ( - 1 ) và x + 5 = ( - 7 )

=> y   = - 2     và x       = - 12

TH4 :

y + 1 = ( - 7 ) và x + 5 = ( - 1 )

=> y  = - 8     và x       = - 6

Vậy : ...

Bình luận (0)
MZ
Xem chi tiết
H24
Xem chi tiết
KN
8 tháng 9 2020 lúc 21:43

Theo đề suy ra:  \(y=\frac{x^2-24}{x+5}=\frac{x^2-25+1}{x+5}=\frac{\left(x+5\right)\left(x-5\right)+1}{x+5}=x-5+\frac{1}{x+5}\)

Để \(x,y\inℤ\)thì \(\frac{1}{x+5}\inℤ\Leftrightarrow1⋮\left(x+5\right)\Leftrightarrow x+5=\pm1\Leftrightarrow\orbr{\begin{cases}x=-4\Rightarrow y=-8\\x=-6\Rightarrow y=-12\end{cases}}\)

Vậy pt có 2 nghiệm là (-4;-8) và (-6;-12)

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 9 2020 lúc 21:54

Cái chỗ ngoặc vuông thì cái đó là “hoặc” mà . Ngoặc kép mới là “và” mà :(

Bình luận (0)
 Khách vãng lai đã xóa
KN
8 tháng 9 2020 lúc 21:59

thì nó đúng là "hoặc" mà bạn, x không thể mang 2 giá trị cùng lúc nên ko lấy dấu "và" đâu !

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
VG
5 tháng 11 2017 lúc 21:45

ta có: \(6x+5y+15=2xy.\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-30\)

\(\Leftrightarrow\left(2x-5\right)\left(3-y\right)=-30\)

mà 2x-5 là số lẻ nên \(2x-5\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

                             \(\Leftrightarrow x\in\left\{3;2;4;1;5;0;10;-5\right\}\)

\(\Leftrightarrow y\in\left\{33;-27;13;-7;9;-3;5;1\right\}\)

Bình luận (0)
PH
Xem chi tiết