Những câu hỏi liên quan
DC
Xem chi tiết
HQ
Xem chi tiết
H24
Xem chi tiết
PL
17 tháng 1 2016 lúc 8:30

tick đi rồi làm cho

 

Bình luận (0)
HG
Xem chi tiết
TP
16 tháng 8 2017 lúc 9:46

SORY I'M I GRADE 6

Bình luận (2)
LD
3 tháng 5 2018 lúc 9:24

????????

Bình luận (0)
NK
19 tháng 5 2020 lúc 19:31

mày hỏi vả bài kiểm tra à thằng điên 

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
NL
Xem chi tiết
TT
26 tháng 2 2016 lúc 21:13

nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0

Bình luận (0)
TL
15 tháng 7 2017 lúc 21:08

CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)

Bình luận (0)
ND
Xem chi tiết
SL
Xem chi tiết
TN
Xem chi tiết
LT
8 tháng 1 2016 lúc 21:20

phân tích vế trái ta được

2(x2+y2+z2(xy+yz+zx))

phân tích vế phải ta được

6(x2+y2+z2(xy+yz+zx))

vì VT=VP nên VP-VT=0

 4(x2+y2+z2(xy+yz+zx))=0

 2(2(x2+y2+z2(xy+yz+zx)))=02((xy)2+(yz)2+(zx)2)=0(xy)2+(yz)2+(zx)2=0

(xy)2=0;(yz)

Bình luận (0)