Những câu hỏi liên quan
TT
Xem chi tiết
UI
Xem chi tiết
LH
20 tháng 5 2021 lúc 13:40

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\) 

\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)

Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)

\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)

minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\)  \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)

maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)

 

Bình luận (1)
TT
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
TP
5 tháng 2 2020 lúc 9:05

Câu 1:

\(y^2+yz+z^2=1-\frac{3x^2}{2}\)

\(\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\)

\(\Leftrightarrow\left(y+z\right)^2+y^2+z^2+3x^2=2\)

\(\Leftrightarrow\left(y+z\right)^2+x^2+2x\left(y+z\right)+y^2+z^2+2x^2-2x\left(y+z\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\)

\(\Leftrightarrow A^2=2-\left[\left(x-y\right)^2+\left(x-z\right)^2\right]\le2\forall x;y;z\)

\(\Leftrightarrow-\sqrt{2}\le A\le\sqrt{2}\)

Vậy \(A_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)

\(A_{max}=\sqrt{2}\Leftrightarrow a=b=c=\frac{\sqrt{2}}{3}\)

Câu 2:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Câu 3:

\(P=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\) ( \(a\ge3;b\ge4;c\ge2\) )

\(P=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)

Áp dụng BĐT Cauchy:

\(P=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}\cdot\sqrt{c-2}}{c}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}\cdot\sqrt{a-3}}{a}+\frac{1}{2}\cdot\frac{2\cdot\sqrt{b-4}}{b}\)

\(\le\frac{1}{\sqrt{2}}\cdot\frac{1}{2}\cdot\frac{2+c-2}{c}+\frac{1}{\sqrt{3}}\cdot\frac{1}{2}\cdot\frac{3+a-3}{a}+\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4+b-4}{b}=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{2}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)

Câu 4:

Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a;b\ge0\right)\)

\(M=a^2-2ab+3b^2-2a+1\)

\(M=a^2-a\left(2b+2\right)+3b^2+1\)

\(\Delta=\left(2b+2\right)^2-4\left(3b^2+1\right)\)

\(=-8b^2+8b\)

\(=-8b\left(b+1\right)\ge0\)

\(b\ge0\) nên \(-8b\left(b+1\right)\le0\)

Dấu "=" xảy ra \(\Leftrightarrow b=0\)

Khi đó \(M=a^2-2a+1=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\)

Vậy \(M_{min}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
HL
Xem chi tiết
TB
Xem chi tiết
LL
Xem chi tiết