Tìm các số nguyên x,y,z thỏa mãn:
x/y + y/z + z/x = y/x + z/y + x/z = x+y+x = 3
Giúp mk với
Tìm các số nguyên x, y, z thỏa mãn: |x - y| + |y - z| + |z - x| = 2015
Mn giúp mình với:
Cho 3 số x; y; z là 3 số khác nhau không thỏa mãn điều kiện:
x + z - x/ x = z + x - y/ y = x + y - z/ z
Hãy tính giá trị biểu thức: A=(1 + x/y) × (1 + y/z) × (1+ z/x)
sao lại không thỏa mãn điều kiện hả bn??
Đề bài : Cho 3 số x,y,z thoả mãn điều kiện \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Tính giá trị biểu thức \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
GIẢI :
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Nếu x+y+z=0 \(\Rightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)Nếu x+y+z khác 0 => \(x=y=z\)Thay vào A được : \(A=\left(1+1\right)\cdot\left(1+1\right).\left(1+1\right)=8\)
Giúp Hộ Mình Bài Này Với :
Tìm Các Cặp Số Nguyên Dương x,y Thỏa Mãn :
2x+ 3y = z2
Mình Đang CAàn Gấp Ạ
Cho x,y,z,t là các số thực thỏa mãn x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+x( với giả thiết giận trị của các phân thức đều được xác định) . Chứng minh rằng:
x+y/z+t + y+z/t+x + z+t/x+y + t+x/y+z = 4
Giúp mk với
Cho các số thực x,y,z thỏa mãn x+y+z=5 và xy+yz+zx=8. Tìm GTLN,GTNN của x,y,z
Cho x, y, z là các số thực dương thỏa mãn: \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). CMR: \((x-1)(y-1)(z-1)\).
Các cậu giúp tớ với ạ~
Thiếu chứng minh điều kiện bằng j bạn ơi
ban ghi ro de bai duoc ko ? mik ko hieu de bai
cho x,y,z là các số nguyên thỏa mãn (x-y)3+(y-z)3+(z-x)3=210
tính giá trị biểu thức P=|x-y|+|y-z|+|z-x|
tìm các số x,y,z biết x/2=y/4=z/6 và x-y+z=8
GIÚP MÌNH VỚI MK ĐG GẤP.
Ta có:x/2=y/4=z/6 =x-y+z/2-4+6=x-y+z=8/2-4+6=4=8/4
Ta thấy:8/4=2/1=2
Vì thế x=2x2=4
y=2x4=8
z=2x6=12
Vậy đáp số là:x=4;y=8;z=12
Nhớ k cho mình nha !Cảm ơn nhiều
Vì \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và x-y+z=8
Đặt \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=4k\\z=6k\end{cases}}\)
mà x+y+z=8 \(\Rightarrow\)2k-4k+6k=8
\(\Rightarrow\)4k=8
\(\Leftrightarrow\)k=2
Vậy \(\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)