1/4^2 + 1/5^2 + 1/6^2 + ... + 1/64^2 < 5/16
Câu 15 A= 1/3-3/4+3/5+1/2007-1/36+1/25-2/9
Câu 16 A=1/3- 3/4- (-3/5)+ 1/64- 2/9- 1/36+ 1/15
Câu 17 A=1/2- 2/3+ 3/4- 4/5+ 5/6- 6/7- 5/6+ 4/5- 3/4+ 2/3- 1/2
15: A= 1/3-3/4+3/5+1/2007-1/36+1/15-2/9
Sửa đề:
A=-3/4-2/9-1/36+1/3+3/5+1/15+1/2007
=-27/36-8/36-1/36+5/15+9/15+1/15+1/2007
=-1+1+1/2007=1/2007
16:
\(A=\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)
=1/64
17:
=1/2-1/2+2/3-2/3+3/4-3/4+4/5-4/5+5/6-5/6-6/7
=-6/7
1)Chứng minh:
1/4^2 + 1/5^2 + 1/6^2 + .... + 1/64^2 < 5/16
CMR:
\(\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+..................+\frac{1}{64^2}< \frac{5}{16}\)
Đặt \(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{64^2}\)
Đặt \(B=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}\)
Ta có: \(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
....................
\(\frac{1}{64^2}< \frac{1}{63.64}\)
\(\Rightarrow B< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)
\(\Rightarrow B< \frac{1}{4}-\frac{1}{64}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4^2}+\frac{1}{4}\)
\(\Rightarrow A< \frac{5}{16}\)
Ta có S =\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{64^2}\)
= \(\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{64.64}\)
< \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}\)
= \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{63}-\frac{1}{64}\)
= \(\frac{1}{3}-\frac{1}{64}\)
= \(\frac{61}{192}\)> \(\frac{60}{192}=\frac{5}{16}\)
S < \(\frac{61}{192}>\frac{5}{16}\)
=> sai đề
Tính:
\(A=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{64^2}< \frac{5}{16}\)
(5/7-7/7)-[0,2-(-2/7-1/10]
(3-1/4+2/3)-(5-1/3-5/6)-(6-7/4+-3/2)
1/3-3/4--3/5+1/64-2/9-1/3+1/15
3/5:(1/15-1/6)+3/5:(-1/3-16/15)
1/2(-3/4-13/14):5/7-(-2/21+1/7):7/7
\(\left(\dfrac{5}{7}-\dfrac{7}{7}\right)-\left[0,2-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)
=\(-\dfrac{2}{7}-\left[\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{1}{10}\right]\)
=\(-\dfrac{2}{7}-\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{10}\)
=\(\left(-\dfrac{2}{7}-\dfrac{2}{7}\right)-\left(\dfrac{1}{5}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\left(\dfrac{2}{10}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\dfrac{3}{10}\)
=\(-\dfrac{40}{70}-\dfrac{21}{70}\)
=\(-\dfrac{61}{70}\)
(3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\)) - (5 - \(\dfrac{1}{3}\) - \(\dfrac{5}{6}\)) - (6 - \(\dfrac{7}{4}\) - \(\dfrac{3}{2}\))
= 3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\) - 5 + \(\dfrac{1}{3}\) + \(\dfrac{5}{6}\) - 6 + \(\dfrac{7}{4}\) + \(\dfrac{3}{2}\)
= (3 - 5 - 6) + ( \(\dfrac{7}{4}\) - \(\dfrac{1}{4}\)) + (\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= - 8 + \(\dfrac{3}{2}\) + 1 + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= (- 8 + 1) + (\(\dfrac{3}{2}\) + \(\dfrac{3}{2}\)) + \(\dfrac{5}{6}\)
= -7 + 3 + \(\dfrac{5}{6}\)
= - 4 + \(\dfrac{5}{6}\)
= \(\dfrac{-19}{6}\)
1/3-1/7-1/13/2/3-2/7-2/3×3/4-3/16-3/64/1-1/4-1/16-1/64+5/8
a,2/9-5/7+20/33+8/21+5/18-6/22
b, 1/2+1/3-1/4+1/6+1/8+1/16+1/32+1/64+1/128
c,5-1/2-5/6-11/12-19/20-29/30
các bn giúp mk nha
Tính nhanh:
a,1/4+2/5+6/8+9/15+8/1
b,1/2+2/4+3/6+4/8+5/10+6/12+7/14+8/16+9/18+10/20
c,1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
= \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
= \(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)
= \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
= \(\dfrac{10+10+10+10+5}{10}\)
= \(\dfrac{\left(10+10+10+10\right)+5}{10}\)
= \(\dfrac{10\times4+5}{10}\)
= \(\dfrac{45}{10}\)
= \(\dfrac{9}{2}\)
Tính nhanh:
a,1/4+2/5+6/8+9/15+8/1
b,1/2+2/4+3/6+4/8+5/10+6/12+7/14+8/16+9/18+10/20
c,1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
= \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
= \(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)
= \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
= \(\dfrac{10+10+10+10+5}{10}\)
= \(\dfrac{\left(10+10+10+10\right)+5}{10}\)
= \(\dfrac{10\times4+5}{10}\)
= \(\dfrac{45}{10}\)
= \(\dfrac{9}{2}\)