tìm x thuộc Z để A thuộc Z
A = \(\frac{2x^2+1}{x-1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
Tìm x thuộc Z để A thuộc Z
Cho A=\(\frac{2x-1}{x+2}\)tìm x thuộc Z để A thuộc Z
Để x thuộc Z thì : à dấu " : " là " chia hết cho " nhá ^^
2x - 1 : x + 2
2x + 2 -3 : x + 2
mà 2x + 2 : x + 2 => 3 : x + 2 => x + 2 thuộc Ư(3) = { 1; -1; 3; -3 }
+) x + 2 = 1
x = -1
+) x + 2 = -1
x = -3
+) x + 2 = 3
x = 1
+) x + 2 = -3
x = -5
Vậy,.........
Để x thuộc Z thì : à dấu " : " là " chia hết cho " nhá ^^
2x - 1 : x + 2
2x + 2 -3 : x + 2
mà 2x + 2 : x + 2 => 3 : x + 2 => x + 2 thuộc Ư(3) = { 1; -1; 3; -3 }
+) x + 2 = 1
x = -1
+) x + 2 = -1
x = -3
+) x + 2 = 3
x = 1
+) x + 2 = -3
x = -5
Vậy,.........
Tìm x thuộc Z để A=\(\frac{1-2x}{x+3}\)thuộc Z.
\(A=\frac{1-2x}{x+3}=\frac{-2x+1}{x+3}=\frac{-2x-6+7}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
Vì \(-2\inℤ\)\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{7}{x+3}\inℤ\)
\(\Rightarrow7⋮x+3\)\(\Rightarrow x+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-10;-4;-2;4\right\}\)
Vậy \(x\in\left\{-10;-4;-2;4\right\}\)
ĐK:\(x\ne-3\)
Với \(A=\frac{1-2X}{X+3}=\frac{-2x-6+7}{x+3}=\frac{-2+7}{x+3}\)
A nguyên <=>\(x+3\inƯ\left(7\right)\)\(\Rightarrow x\in\left\{1;-1;7;-7\right\}\)
Vậy...
\(Q=\left(\frac{x+2}{x^2+2x+1}-\frac{x-2}{x^2-1}\right)\frac{x+1}{x}\)
a) Rút gọn
b) tìm x thuộc Z để Q thuộc Z
A = \(\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a, Rút gọn A
b, Tìm x để A < 1
c, Tìm x để A = \(\left(x-1\right)^3:x^2\)
d, Tìm x thuộc Z để A thuộc Z
\(a,ĐKXĐ:x\ne0;x\ne1\)
\(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left[\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}+\frac{2-x^2}{x^2-x}\right]\)
\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left(\frac{x^2-1+1+2-x^2}{x^2-x}\right)\)
\(A=\frac{x^2+x}{\left(x-1\right)^2}:\frac{2}{x\left(x-1\right)}\)
\(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}.\frac{x\left(x-1\right)}{2}\)
\(A=\frac{x^2\left(x+1\right)}{2\left(x-1\right)}=\frac{x^3+x^2}{2x-2}\)
Tìm x thuộc Z để A thuộc Z và tìm giá trị đó:
a) \(A=\frac{x+3}{x-2}\)
b) \(A=\frac{1-2x}{x+3}\)
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
A= \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{x-6\sqrt{5}+5}{2x+7\sqrt{x}-4}\)
a) Tìm TXĐ của A
b) Rút gọn A
c) Tìm x để A >\(\frac{1}{2}\)
d) Tìm x thuộc Z để A thuộc Z
đè hinh như là 6\(\sqrt{x}\) nhi bạn
Bài 1 : Cho biểu thức A = \(\frac{3x-1}{x-1}\)và B = \(\frac{2x^2+x-1}{x+2}\)
a ) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để B thuộc Z
Bài 2 : Tìm x ,y biết :
a ) \(\frac{1}{9}.27^x=3^x\)
b ) \(\left(x-\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=0\)
c ) \(x^2=2x\)
Mọi người làm giúp mình nhé , nhớ làm đầy đủ phân tích , kết quả phân tích , kết quả cuối .
a) bài 1
để \(x\in Z\)thì \(3x-1⋮x-1\)
mà \(x-1⋮x-1\)
\(\Rightarrow3\left(x-1\right)⋮x-1\)
\(\Rightarrow\left(3x-1\right)-\left[3x-3\right]⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có bảng
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
vậy \(x\in\left\{2;0;3;-1\right\}\)
câu c bài 2:
x chỉ nhận giá trị là 2
thật vậy
\(2^2=4\)
\(2.2=4\)
A ) \(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
a, RÚT GỌN Q
b, TÌM x THUỘC TẬP HỢP Z ĐỂ Q THUỘC TẬP HỢP Z
vào thống kê xem link nhé:
Câu hỏi của Kim Trân Ni - Toán lớp 8 - Học toán với OnlineMath