cho tam giác ABC vuông tại A, đường cao AH: chứng minh AB/AC = căn HB / căn HC
ai giúp mình với
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
cho tam giác ABC vuông tại A đường cao ah .chứng minh tam giác HBA đồng dạng với tam giác ABC , chứng minh AH^2 = HB×HC ,tia phân giác góc AHC cắt AC tại d chứng minh HB/HC = AB^2/DC^2 , khi c bằng 45° và AB =6cm tính độ dài HD
Cho tam giác abc vuông tại a vẽ đường cao ah, ab =6cm,ac=8cm a,Chứng minh tam giácHBA đồng dạng với tam giác abc b,chứng minh ah2=hb nhân hc
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH (H thuộc BC)
a) Cho biết HB = 3cm, HC = 9cm. Tính AH, AB, AC?
b) Chứng minh: tan2C + cot2C = HC/HB + HC/HB (không sử dụng số liệu ở câu a để chứng minh).
Mình giải bài mà bí quá, SOS xin các thần thánh cao nhân cứu giúp!!!
a: BC=BH+CH
=3+9
=12(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=3\cdot9=27\)
=>\(AH=3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{3\cdot12}=6\left(cm\right)\\AC=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)
b: \(tan^2C+cot^2C\)
\(=\left(\dfrac{AC}{AB}\right)^2+\left(\dfrac{AB}{AC}\right)^2\)
\(=\dfrac{AC^2}{AB^2}+\dfrac{AB^2}{AC^2}\)
\(=\dfrac{HC\cdot BC}{HB\cdot BC}+\dfrac{HB\cdot BC}{HC\cdot CB}\)
\(=\dfrac{HC}{HB}+\dfrac{HB}{HC}\)
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH (H thuộc BC)
a) Cho biết HB = 3cm, HC = 9cm. Tính AH, AB, AC?
b) Chứng minh: tan2C + cot2C = HC/HB + HC/HB (không sử dụng số liệu ở câu a để chứng minh).
cho tam giác ABC vuông tại A có :AB=6cm,AC=9cm,đường cao AH
a,Chứng minh :tam giác ABC đồng dạng với tam giác HBA
b,Tính HB,HC
c,Đường phân giác góc B cắt AH tại I.Chứng minh :AI/AH=5/8
Câu 1 : Cho Tam Giác ABC ( A = 90 độ ) biết AB = 3 Cm , C = 30 độ . Tính AC , BC
Câu 2 : Cho Tam Giác ABC Vuông Tại A , Đường Cao AH . Biết HB = 9 Cm , HC=16Cm
a , Tính AB , Ac , Ah
b, Gọi D Và E Lần Lượt Là Hình Chiếu Vuông Góc Của H Trên AB Và AC . Tứ Giác ADHE Là Hình Gì ? Chứng Minh
c , Tính Chu Vi Và Diện Tích Của Tứ Giác Đó
Câu 3 : Cho Tam Giác ABC Vuông Tại A , Đường Cao AH , Biết BH = a , CH = b
Chứng Minh : Căn Bậc Hai Của ab bé hơn hoặc bằng a+b/2
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
Ở trên nhầm: AH2=ab\(\Rightarrow AH=\sqrt{ab}\)
Kết hợp (1), (2) và (3) \(\Rightarrow\sqrt{ab}\le\frac{a+b}{2}\)
Bài 5 : Cho tam giác ABC vuông tại A, kẻ đường cao AH. Biết AB = 6cm, BH = 3cm. Tính AH, AC, HC
Bài 8 Cho tam giác ABC vuông tại A. Biết \(\frac{5}{7}\). Đường cao AH = 15cm. Tính HB, HC
Các bạn giúp mình với, mình cần gấp
có ai giúp mình giải bài này với được k ( mình cần gấp, mình cảm ơn)
-Bài 3: cho tam giác ABC vuông tại A , đường cao AH, biết AH:AC=3:5 và AB=15cm
a, tính HB và HC
b, gọi E, F lần lượt là hình chiếu của H trên AB và AC ; chứng minh AB.AC=EF.BC
Lời giải:
a. Vì $AH:AC=3:5$ nên đặt $AH=3a; AC=5a$ với $a>0$
Ta có: $AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}$
$AH^2=\frac{AB^2AC^2}{BC^2}=\frac{AB^2.AC^2}{AB^2+AC^2}$
$(3a)^2=\frac{15^2.(5a)^2}{15^2+(5a)^2}$
$\Leftrightarrow 9a^2=\frac{225a^2}{a^2+9}$
$\Leftrightarrow 9=\frac{225}{a^2+9}$
$\Leftrightarrow 9(a^2+9)=225$
$\Rightarrow a=4$ (cm)
$AH=3a=12$ (cm); $AC=5a=20$ (cm)
Áp dụng định lý Pitago:
$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
$HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)
b.
Vì $AEHF$ có 3 góc vuông $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên đây là hình chữ nhật
$\Rightarrow EF=AH$
Do đó: $EF.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm)