Những câu hỏi liên quan
NB
Xem chi tiết
LH
28 tháng 7 2016 lúc 19:41

A = abc + bca + cab

=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>A = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> A = 111a + 111b + 111c

=> A= 111( a+b+c )= 37 . 3( a+b + c)

giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

 3(a+b+c) chia hết 37

  => a+b+c chia hết cho 37 

Điều này không xảy ra vì           1 \(\le\) a + b + c \(\le\) 27

 A = abc + bca + cab không phải là số chính phương

Bình luận (0)
H24
Xem chi tiết
H24
2 tháng 6 2015 lúc 6:41

ta có 

s = abc + bca + cab

=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>S = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> S = 111a + 111b + 111c

=> S = 111( a+b+c )= 37 . 3( a+b + c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

                       3(a+b+c) chia hết 37

                      => a+b+c chia hết cho 37 

Điều này không xảy ra vì           1 \(\le a+b+c\le27\) 

vậy S = abc + bca + cab không phải là số chính phương

Bình luận (0)
DV
1 tháng 6 2015 lúc 9:49

S = abc (ngang) + bca (ngang) + cab (ngang)

    = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

    = 111a + 111b + 111c

     = 111.(a + b + c)

=> Không phải là số chính phương vì a,b,c là các chữ số tự nhiên nên a + b + c \(\ne\) 111

Bình luận (0)
H24
1 tháng 6 2015 lúc 9:52

     S = abc + bca + cab 

=> S = ( 100a + 10b + c ) + ( 100b + 10c + a)+ ( 100c + 10a + b)

=>  S = 100a + 10b + c + 100b + 10c + a + 100c + 10a +b

=>  S = 111a + 111b + 111c

=> S = 111( a+b+c)

vì 0< a+b+c \(\le\) 27 nên a + b + c không chia hết cho 37

mặt khác ( 3 ; 37)=1 nên 3( a+b+c) không chia hết cho 37

=> S không phải là số chính phương

Bình luận (0)
H24
Xem chi tiết
FT
16 tháng 1 2016 lúc 16:38

mình biết làm như vì lý do ngại giải quá nên bạn thông cảm vào đây:GIÚP TÔI GIẢI TOÁn

Bình luận (0)
DH
16 tháng 1 2016 lúc 17:06

Để A = abc + bca + cab = 111(a + b + c) = 3.37(a + b + c)

Để A là số chính phương thì a + b + c chia hết cho 3.37 

nhưng 3<a + b + c>27 nên a + b + c không chia hết cho 37

Vậy A không là số chính phương.

Bình luận (0)
NN
Xem chi tiết
LH
26 tháng 7 2016 lúc 8:55

M=abc+bca+cab= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b) = 1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn

Vậy M không phải là số chính phương

Bình luận (1)
VD
Xem chi tiết
NX
20 tháng 6 2016 lúc 21:05

\(S=\overline{abc}+\overline{bca}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=111a+111b+111c\)

\(=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)

vì : \(0< a,b,c\le9;\left(a;b;c\in N\right)\)

\(\Rightarrow a+b+c\le27\)

\(\Rightarrow a+b+c⋮̸37̸\)

mà \(\left(3,37\right)=1\)

\(\Rightarrow3\left(a+b+c\right)⋮̸37̸\)

do đó S không là số chính phương

Bình luận (0)
H24
20 tháng 6 2016 lúc 20:54

S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương S

Bình luận (0)
NH
2 tháng 12 2016 lúc 18:18

S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)

Vậy không tồn tại số chính phương S

Bình luận (0)
TL
Xem chi tiết
NT
9 tháng 7 2015 lúc 16:50

Ta có :abc + bca + cab = 111a+ 111b+111c=111(a+b+c)= 3.37.(a+b+c)

Vì SCP chứa các thừ số ng tố với số mũ chẵn nên 3. 37.(a+b+c)=3.37.k^2

Vô lí vì 3<a+b+c<27

Vậy , abc+bca+cba ko là số chính phương.

1li-ke nha ! > . < !

Bình luận (0)
DA
31 tháng 7 2016 lúc 10:31

mình ko hiểu cách giải này của bạn ở cái chỗ bạn bảo vô lý đó

Bình luận (0)
MH
Xem chi tiết
NG
Xem chi tiết
DT
21 tháng 7 2015 lúc 10:45

ta có : abc + bca + cab = 111a + 111b + 111c 

                                         = 111 . (a+b+c)

                                         = 3. 37 . (a+b+c) 

Để S là số chính phương thì a+b+c = 3. 37 . k^2. 

Mà a+ b+ c < hoặc = 27 nên : 

                      Vay tog S ko phai la so chih phuong 

Bình luận (0)
LV
Xem chi tiết
NL
17 tháng 5 2016 lúc 15:21

chính phương là gì

Bình luận (0)
LV
17 tháng 5 2016 lúc 15:26

là bình phương của 1 số tự nhiên bạn ajvui

Bình luận (0)
PD
17 tháng 5 2016 lúc 18:16

Ta có abc+bca+cab

=100a+10b+c+100b+10c+a+100c+10a+b

=(100a+a+10a)+(10b+100b+b)+(c+10c+100c)

=111a+111b+111c

=111*(a+b+c)=37*(3a+3b+3c)=3*(37a+37b+37c)

TH1:Mà 111 không phải là số chính phương nên để 111*(a+b+c) là số chính phương thì (a+b+c)=111

Mà a<10;b<10;c<10

=>a+b+c<30(mâu thuẫn)

TH2:Mà 37 không phải là số chính phương nên để 37*(3a+3b+3c) là số chính phương thì (3a+3b+3c)=37

Mà 3a\(⋮\)3;3b\(⋮\)3;3c\(⋮\)3

=>3a+3b+3c\(⋮\)3

Mà 37\(⋮̸\)3(mâu thuẫn)

TH3:Vì a>0;b>0;c>0 

=>37a+37b+37c>111

Mà 3 không phải là số chính phương nên để 3*(37a+37b+37c) là số chính phương thì 37a+37b+37c=3(mâu thuẫn)

Ta thấy trong cả 3 trường hợp thì abc+bca+cab đều không thể số chính phương

Nên abc+bca+cab không thể là số chính phương(điều phải chứng minh)

 

Bình luận (0)