Cho a,b,c >0. Chứng minh a/bc+b/ac+c/ba>=2(1/a+1/b+1/c)
1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Cho ba số dương 0<=a<=b<=c<=1 chứng minh rằng a/bc+1+b/ac+1+c/ab+1<=2
Cho a,b,c là ba số dương thoả mãn \(0\le a\le b\le c\le1\)
Chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Giải :
Từ giả thiết ta có : \(\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(b+c\right)+bc\ge0\Rightarrow bc+1\ge b+c\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta cũng có : \(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\) ; \(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng (1) , (2) , (3) theo vế ta được : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
ta có : a<= 1 => a-1<=0
b<=1 => b-1<=0
=> (b-1)(a-1) >= 0 => ab-a-b+1 >=0 => ab+1>=a+b => 2ab+1>= a+b ( vì ab>=0)
=> 2ab+1+1>= a+b+c ( vì 1>= c)
2ab+2>=a+b+c => 1/2ab+2<=1/a+b+c c/ab+1<= 2c/a+b+c
chứng minh tương tự ta có b/ac+1 <= 2b/a+b+c ; a/bc+1<= 2a/a+b+c
=> a/bc+1+b/ac+1 + c/ab+c <= 2a+2b+2c / a+b+c = 2 ( đpcm )
Bạn Nguyễn Thị Thùy Chi làm dễ hiểu hơn đấy
Cho ba số dương 0<a<b<c<1 chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}_-< 2\)
Do a,b,c thuộc N mà a,b,c<1
\(\Rightarrow\)a=0,b=0,c=0
Vậy ....
cho a,b,c>0. Chứng minh a/ bc + b/ac + c/ab > =2(1/a +1/b - 1/c)
Áp dụng BĐT AM - GM cho 2 số dương:
\(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{ab}{abc^2}}=\frac{2}{c}\)
\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{bc}{a^2bc}}=\frac{2}{a}\)
\(\frac{a}{bc}+\frac{c}{ab}\ge2\sqrt{\frac{ac}{ab^2c}}=\frac{2}{b}\)
Cộng từng vế của các BĐT trên. ta được:
\(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(đpcm\right)\)
cho a,b,c>0.
Chứng minh a/ bc + b/ac + c/ab > =2(1/a +1/b - 1/c)
.
Cho ba số duơng 0 ≤ a ≤ b ≤ c ≤ 1 chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
. Cho ba số dương 0=<a=<b=<c chứng minh rằng:\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\)
Chứng minh hộ em bài toán về bất đẳng thức . toán 9 !?
cho a, b , c >0 : chứng minh " a/bc +b/ac+ c/ab >= 1/a +1/b +1/ca/bc + b/ac >= 2.căn(1/c^2) = 2/c
tương tự:
a/bc + c/ab >= 2/b
b/ac + c/ab >= 2/a
cộng vế theo vế ;
ta đc
a/bc +b/ac+ c/ab >= 1/a +1/b +1/c
2)
a / (b+c) + 1 = (a+b+c)/(b+c)
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 = (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
áp dụng bđt cauchy quen thuộc
(x+y+z)(1/x + 1/y + 1/z) >= 9
=> 2(a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
= (a+b + b+c + c+a)(1/(b+c) + 1/(a+c) + 1/(a+b)) >=9
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) >= 9/2
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) >=3/2
Chắc làm vậy
cho a+b+c=\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\); a,b,c khác 0 chứng minh b.(a2-bc).(1-ac) = a.(1-bc).(b2-ac)
cho a, b, c thỏa mãn a+b+c=2, ab+bc+ac=1. Chứng minh 4/3 >= a,bb,c >=0
a,bb,c là như thế nào bạn nhỉ?