cho A=1+3+32+33+........+32019
chứng tỏ A ko là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giúp Mình mấy bài này với nhe!!!
1. Cho Y = 1+3+32+33+.....+398
Chứng tỏ rằng Y⋮13.
2. Cho A = 1+3+32+33.....+32018+32019
Chứng tỏ rằng A⋮4.
3. 2.(x+4)+5=65 (Tìm x).
4.Cho A = 119+ 118+117+.....+11+1. Chứng minh rằng A⋮5. Phần A nha!!!
B) Chứng minh rằng với mọi số tự nhiên n thì n2+n+1 không chia hết cho 4.
5. a) 96-3.(x+1)=42 ( Tìmx )
b) 15x-9x+2x=72
c) 3x+2+3x=10
6. a) 125-3.(x+8)=77
b) (7x-11)3= 22.52- 73
c) 5x+1+5x+2= 750
d) (2x-1)2018= (2x-1)2019.
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
Cho \(A=1+3+3^2+3^3+3^4+...+3^{90}\) CMR \(A\) không phải là số chính phương
Lời giải:
$A=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+...+(3^{87}+3^{88}+3^{89}+3^{90})$
$=13+3^3(1+3+3^2+3^3)+3^7(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$
$=13+(1+3+3^2+3^3)(3^3+3^7+...+3^{87})$
$=13+40(3^3+3^7+...+3^{87})$
$\Rightarrow A$ chia 5 dư 3
Do đó A không là scp.
Ta có:
\(A=1+3+3^2+3^3+...+3^{90}\)
\(3A=3\cdot\left(1+3+3^2+...+3^{90}\right)\)
\(3A=3+3^2+3^3+...+3^{91}\)
\(3A-A=3+3^2+3^3+...+3^{91}-1-3-3^2-...-3^{90}\)
\(2A=3^{91}-1\)
\(A=\dfrac{3^{91}-1}{2}\)
Mà: \(3^{91}-1\) không phải là số chính phương nên \(A=\dfrac{3^{91}-1}{2}\) không phải là số chính phương
A=3+32+33+.....+320
Số trên là số chính phương hay không phải là số chính phương
Lời giải:
Ta thấy
$3^2\vdots 9$
$3^3=3^2.3\vdots 9$
......
$3^{20}=3^2.3^{18}\vdots 9$
$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$
$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9
$\Rightarrow A$ không thể là số chính phương.
Chứng tỏ rằng, mỗi tổng hoặc hiệu sau đây là một số chính phương:
a) 3 2 + 4 2
b) 13 2 - 5 2
c) 1 3 + 2 3 + 3 3 + 4 3
Chứng tỏ rằng, mỗi tổng hoặc hiệu sau đây là một số chính phương:
a, 3 2 + 4 2
b, 13 2 - 5 2
c, 1 3 + 2 3 + 3 3 + 4 3
a, 3 2 + 4 2 = 25 = 5 2 là số chính phương.
b, 13 2 - 5 2 = 144 = 12 2 là số chính phương.
c, 1 3 + 2 3 + 3 3 + 4 3 = 100 = 10 2 là số chính phương.
A=3+32+33+...+32015
a) CMR: A chia hết cho 121
b)tìm n biết 2A+3=27n
c) A có phải số chính phương ko??
giúp mình nha! ai làm đúng tui tick cho
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
Cho A = 1 + 3 + 3 2 + 3 3 + . . . . + 3 30 . Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
Cho A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30 . Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30
3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31
2A = 3A – A = ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 ) – ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )
2A = 3 31 - 1
A = 3 31 - 1 2
Ta có 3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243
với n ≥ 0 thì 3 4 n + 3 có chữ số tận cùng là 7.Vì 31 = 4.7 + 3 nên 3 31 có chữ số tận cùng là 7. Do đó 3 31 - 1 2 có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.
Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?
a)Tìm 2 số nguyên tố x;y thỏa mãn x2-y2=45
b)Cho S=1+3+32+34+...+330
Chứng tỏ S không phải là số chính phương
a) x2-y2=45 =>(x-y)(x+y)=45. Vì x,y là các số tự nhiên và x-y<x+y nên ta có thể viết:
(x-y)(x+y)=3.15 hay (x-y)(x+y)=5.9
=>x-y=3 và x+y=15 hay x-y=5 và x+y=9.
=>x=9 và y=6 (đều loại) hay x=7 và y=2 (đều thỏa mãn).
- Vậy x=7, y=2.
b) - Sửa lại đề: S=1+3+32+33+...+330.
=(1+3+32)+(32+33+34+35)+...+(327+328+329+330).
=13+32(1+3+32+33)+...+327(1+3+32+33)
=13+32.40+...+327.40
=13+40.(32+...+327) chia 5 dư 3.
- Mà các số chính phương chỉ có chữ số tận cùng là 0.1.4.5.6.9 nên số chính phương chia 5 dư 0;1;4.
- Vậy S không phải là số chính phương.