Những câu hỏi liên quan
NM
Xem chi tiết
H24
2 tháng 6 2021 lúc 8:51

\(A=\dfrac{\sqrt{60}}{\sqrt{15}}\\=\sqrt{\dfrac{60}{15}}\\=\sqrt{4}=2\)

\(B=\sqrt{\dfrac{72}{15}}:\sqrt{\dfrac{2}{15}}\\=\sqrt{\dfrac{72}{15}}\cdot\sqrt{\dfrac{15}{2}}\\=\sqrt{\dfrac{72}{2}}=6\)

\(C=\left(\sqrt{3}+\sqrt{2}\right)\cdot\left(\sqrt{2}-\sqrt{3}\right)\\=\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\\=2-3=-1\)

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 8 2019 lúc 10:32

Chọn đáp án D.

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 22:46

\(A = \cos {75^0}\cos {15^0} = \frac{1}{2}\left[ {\cos \left( {{{75}^0} - {{15}^0}} \right) + \cos \left( {{{75}^0} + {{15}^0}} \right)} \right] \\= \frac{1}{2}.\cos {60^0}.\cos {90^0} = 0\)

\(B = \sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}} = \frac{1}{2}\left[ {\sin \left( {\frac{{5\pi }}{{12}} - \frac{{7\pi }}{{12}}} \right) + \sin \left( {\frac{{5\pi }}{{12}} + \frac{{7\pi }}{{12}}} \right)} \right] \\= \frac{1}{2}\sin \left( { - \frac{{2\pi }}{{12}}} \right).\sin \left( {\frac{{12\pi }}{{12}}} \right) =  - \frac{1}{2}\sin \frac{\pi }{6}\sin \pi  = 0\)

Bình luận (0)
TH
Xem chi tiết
DA
10 tháng 8 2018 lúc 9:32

hả

cái đầu bài kiểu j z

Bình luận (0)
TH
Xem chi tiết
NT
Xem chi tiết
an
18 tháng 12 2016 lúc 20:51

bằng 1000

Bình luận (1)
DH
18 tháng 12 2016 lúc 22:01

why?

Bình luận (0)
LD
19 tháng 12 2016 lúc 20:56

194195.195194=37905698

194194.195195=37905697

=> a=1

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 22:47

\(B = \left( {\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9}} \right) + \cos \frac{{11\pi }}{9} = \left( {2\cos \frac{{\frac{\pi }{9} + \frac{{5\pi }}{9}}}{2}\cos \frac{{\frac{\pi }{9} - \frac{{5\pi }}{9}}}{2}} \right) + \cos \frac{{11\pi }}{9} = 2\cos \frac{\pi }{3}\cos \frac{{2\pi }}{9} + \cos \frac{{11\pi }}{9}\)

\( = \cos \frac{{2\pi }}{9} + \cos \frac{{11\pi }}{9} = 2\cos \frac{{\frac{{2\pi }}{9} + \frac{{11\pi }}{9}}}{2}\cos \frac{{\frac{{2\pi }}{9} - \frac{{11\pi }}{9}}}{2} = 2\cos \frac{{13\pi }}{{18}}\cos \frac{\pi }{2} = 0\)

Bình luận (0)
UU
Xem chi tiết
NL
28 tháng 4 2021 lúc 21:29

\(P.sin\left(\dfrac{\pi}{7}\right)=sin\dfrac{\pi}{7}.cos\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}\)

\(\Leftrightarrow P.sin\dfrac{\pi}{7}=\dfrac{1}{2}sin\dfrac{2\pi}{7}cos\dfrac{2\pi}{7}cos\dfrac{4\pi}{7}\)

\(\Leftrightarrow P.sin\dfrac{\pi}{7}=\dfrac{1}{4}sin\dfrac{4\pi}{7}cos\dfrac{4\pi}{7}\)

\(\Leftrightarrow P.sin\dfrac{\pi}{7}=\dfrac{1}{8}sin\dfrac{8\pi}{7}=\dfrac{1}{8}sin\left(\pi+\dfrac{\pi}{7}\right)\)

\(\Leftrightarrow P.sin\dfrac{\pi}{7}=-\dfrac{1}{8}sin\dfrac{\pi}{7}\)

\(\Rightarrow P=-\dfrac{1}{8}\)

Bình luận (0)
LD
Xem chi tiết
LN
7 tháng 3 2019 lúc 18:59

đương nhiên mk ko dùng máy tính mà chỉ tính máy thôi

Bình luận (0)
PL
7 tháng 3 2019 lúc 19:08

A = 1^2 + 2^2 + 3^2 + ...+ 100^2

A = 1.1 + 2.2 + 3.3 + ... + 100.100

A = 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 100.(101 - 1)

A = 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 100.101 - 100

A = (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3 + ... + 100)

đặt B = 1.2 + 2.3 + 3.4 + ... + 100.101  

3B = 1.2.3 + 2.3.3 +3.4.3 + ... + 100.101.3

3B= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)

3B = 1.2.3 + 2.3.4 - 1.2.3 + 2.3.4 -3.4.5 + ... +99.100.101 -100.101.102

3B = 99.100.101

B = 99.100.101 : 3

B = 33.100.101

Vậy B = 333300 (1)

Đặt C = 1 + 2 + 3 + ... + 100

C = 

Tổng = (Số đầu + số cuối)*số lượng các số trong dãy / 2

Để tính số lượng các số trong dãy chúng ta lấy số cuối - số đầu + 1

Vậy C = (1+100)*100:2 = 5050 (2)

Từ (1) và (2) có:

A = B - C = 333300 - 5050 = 328250

Bình luận (0)