Những câu hỏi liên quan
JT
Xem chi tiết
H24
Xem chi tiết
H24
1 tháng 4 2021 lúc 15:50

=> A<1/1.2 + 1/2.3 + ....+ 1/2001.2002 + 1/2002.2003

=> A< 1- 1/2 + 1/2 - 1/3 + .... + 1/2001 - 1/2002 + 1/2002 - 1/2003

=>A< 1 - 1/2003 < 1

=> A< 1

Bình luận (0)
DT
Xem chi tiết
BD
29 tháng 7 2018 lúc 10:22

vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)(do 22  > 1.2)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)(do 32>2.3)

             \(\frac{1}{4^2}< \frac{1}{3.4}\)(do 42 >3.4)

          ...

           \(\frac{1}{2002^2}< \frac{1}{2001.2002}\)(do 20022 > 2001.2002)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)(2)

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)

   \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)

   \(=\frac{1}{1}-\frac{1}{2002}\) 

    \(=\frac{2002}{2002}-\frac{1}{2002}\)

     \(=\frac{2001}{2002}< 1\)(2)

Từ (1) và (2) suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< 1\)

Bài toán được chứng minh

Bình luận (0)
HC
Xem chi tiết
LT
Xem chi tiết
NC
21 tháng 1 2017 lúc 18:29

ko bit

Bình luận (0)
NQ
9 tháng 1 2022 lúc 13:35

Ko biết

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
DT
31 tháng 3 2017 lúc 9:17

Đáp án của tớ là:

\(\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}=\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)=\)\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)

Vậy:\(1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}\)

Bình luận (0)
H24
6 tháng 3 2015 lúc 16:36

xin chòa hôm nay mình sẽ giúp bạn lam bài toán này 

ta có

1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1+1/2+1/3+....+1/1001)

1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1/2+1/4+1/6+....+1/2002)-(1/2+1/4+1/6+......+1/2002)

1/1002+1/1003+.....+1/2003=1+1/2+1/3+....+1/2003-1/2+1/4+1/6+....+1/2002-1/2-1/4-1/6-....-1/2002

Vậy1/1002+1/1002+.....+1/2003=1-1/2+1/3-1/4+....-2/2002-1/2003

Bình luận (0)
DT
31 tháng 3 2017 lúc 9:19

Sửa: Vậy: \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2003}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}\)

Bình luận (0)
LN
Xem chi tiết
MR
Xem chi tiết
HC
30 tháng 1 2018 lúc 12:46

Bạn nào trả lời bài này nhanh nhất thì add vs mk , mk sẽ tặng 1 thẻ điện thoại 50k cho 2 bạn trả lời nhanh nhất nhé!

Nhanh các bạn ơi!!!

Hứa k bùng đâu

Bình luận (0)
H24
20 tháng 7 2018 lúc 20:32

a,+5.2002

b,5.2003

Bình luận (0)
DP
Xem chi tiết