Những câu hỏi liên quan
NA
Xem chi tiết
CC
3 tháng 4 2018 lúc 13:22

Bài này cũng dễ 

Chuyển hết qua 1 vế ta được

a^2+4b^2+3c^2–2a–12b–6c >0

<=> (a–1)^2+(2b–3)^2+3(c–1)^2 >0

Vì bất đẳng thức cuối đúng 

Nên cái đề

Bình luận (0)
NA
3 tháng 4 2018 lúc 16:48

Số cộng lại có đủ 14 ko z bạn

Bình luận (0)
TN
Xem chi tiết
AT
2 tháng 12 2019 lúc 22:16

\(a^2+4b^2+3c^2+14\ge2a+12b+6c\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(4b^2-12b+9\right)+3\left(c^2-2c+1\right)+1\ge0\)

Bình luận (1)
 Khách vãng lai đã xóa
DW
2 tháng 12 2019 lúc 23:21

BĐT \(\Leftrightarrow\left(a^2-2a+1\right)+\left(4b^2-12b+9\right)+3\left(c^2-2c+1\right)\)

\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi : \(\left\{{}\begin{matrix}a-1=0\\2b-3=0\\c-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=\frac{3}{2}\\c=1\end{matrix}\right.\)

Vậy ....

Bình luận (1)
 Khách vãng lai đã xóa
LP
Xem chi tiết
NL
25 tháng 6 2017 lúc 16:59

Ta có:

\(\left(a^2+4b^2+3c^2\right)-\left(20a+12b-6c-14\right)\)

\(=a^2+4b^2+3c^2-20a-12b-6c-14\)

\(=\left(a^2-2.a.10+100\right)+\left[\left(2b\right)^2-2.2b.3+9\right]+3\left(c^2+2c+1\right)-98\)

\(=\left(a-10\right)^2+\left(2b-3\right)^2+3\left(c+1\right)^2-98\ge-98\)

Vậy đề bài vô lý

Bình luận (0)
NA
Xem chi tiết
NT
5 tháng 8 2023 lúc 10:56

\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)

\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)

\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)

mà \(2a+12b+6c-13>2a+12b+6c-14\)

\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)

\(\Rightarrow dpcm\)

Bình luận (0)
NT
5 tháng 8 2023 lúc 10:45

 (luôn đúng)

 BĐT ban đầu đúng

Bình luận (0)
HC
Xem chi tiết
TT
26 tháng 6 2017 lúc 12:00

Bạn lạ ghê cho đề mà không nêu yêu cầu lấy gì mọi người giải được.

Bình luận (0)
NL
26 tháng 6 2017 lúc 15:56

Yêu cầu đề bài đâu Hà Trung Chiến 

Bình luận (0)
LT
Xem chi tiết
CT
Xem chi tiết
NN
20 tháng 3 2017 lúc 8:13

chuyển 2a + 4b + 6c sang vế trái ta được:

a^2 + b^2 + c^2 -2a -4b -6c + 14 =0

<=> a^2 -2a + 1 + b^2 - 4b + 4 + c^2 - 6c +9 = 0

<=> (a-1)^2 + (b-2)^2 + (c-3)^2 = 0

=> (a - 1)^2 = 0          a - 1 = 0          a = 1

     (b - 2)^2 = 0  <=>  b - 2 = 0  <=>  b = 2          

     (c - 3)^2 = 0          c - 3 = 0          c = 3

=> a + b + c = 1 + 2 + 3 = 6

Mình trình bày không được đẹp, bạn thông cảm nha =)

Bình luận (0)
BV
Xem chi tiết
HN
Xem chi tiết
TT
19 tháng 3 2017 lúc 21:04

\(a^2+b^2+c^2+14-2a-4b-6c=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)

\(\left(a-1\right)^2\ge0;\left(b-2\right)^2\ge0;\left(c-3\right)^2\ge0\)nên

\(\left\{{}\begin{matrix}a-1=0\\b-2=0\\c-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Bình luận (0)