Tìm giá trị lớn nhất của các biếu thức a) 5-x^2 ; b)1/x^2+5 ; c) 3/(x-2)^2+3 ; d) -2x^2+5
Tìm giá trị nhỏ nhất của biếu thức :
A=|x+5|+2019.
Các bạn nhớ ghi cách trình bày nha
\(A=\left|x+5\right|+2019\)
Vì \(\left|x+5\right|\ge0\)với \(x\in Q\)
nên \(A=\left|x+5\right|+2019\ge2019\)
Dấu ' = ' xảy ra khi x = -5
Vậy giá trị nhỏ nhất của A là 2019 khi x = -5
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
cho biểu thức \(A=33×3+720:\left(x-6\right)\)
Tìm giá trị của x khi \(A=139\)
Tìm giá trị số tự nhiên của x để biểu thức A có giá trị lớn nhất, giá trị lớn nhất là bao nhiêu?
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
Với giá trị nào của biến, các đa thức sau có giá trị lớn nhất? Tìm giá trị lớn nhất đó
a/ -x^2 + x + 6
b/ -x^2 + 2x - 4y^2 - 4y + 5
a.\(-\left(x^2-x-6\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy Max của biểu thức = \(\frac{25}{4}\Leftrightarrow x=\frac{1}{2}\)
Chọn mình nha mình sẽ làm típ 1 bài nữa
Tìm giá trị nhỏ nhất của biểu thức ( các bạn trình bày chi tiết giùm mình nha )
a) M = |x+15/19|
b) N = |x-4/7| -1/2
Tìm giá trị lớn nhất của biểu thc
a) P = - |5/3-x|
b) Q = 9 - |x-1/10|
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất ( nếu có ) của các đa thức sau:
a) 4x2 - 4x + 3
b) -x2 + 2x - 3
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
Tìm giá trị lớn nhất của các biểu thức sau:
a. A=4 - x^2 + 2x
b. B=4x - X^2
\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)
\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)
Vậy MaxA=5 khi x=1
\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)
Vậy MaxB=4 khi x=2
a) \(4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(\left(x-1\right)^2-5\right)\)
\(=5-\left(x-1\right)^2\ge5\)
MIn A = 5 khi \(x-1=0=>x=1\)
b) \(4x-x^2\)
\(=-\left(x^2-4x+4-4\right)\)
\(=>-\left(\left(x-2\right)^2-4\right)\)
\(=4-\left(x-2\right)\ge4\)
MIN B = 4 khi \(x-2=0=>x=2\)
Ủng hộ nha tối rồi
1. Tìm các giá trị nguyên của x để biểu thức sau có giá trị lớn nhất:
a.A=\(\frac{2}{5-x}\) b. B=\(\frac{19-2x}{9-x}\)
2. Cho hai biểu thức: A=\(\frac{4x-7}{x-2}\); B=\(\frac{3x-9x+2}{x-3}\). Tìm các giá trị nguyên của x để cả hai biểu thức cùng có giá trị nguyên.
Tìm giá trị lớn nhất của biểu thức A=1/(x+2)^2+3