Những câu hỏi liên quan
NM
Xem chi tiết
VN
17 tháng 3 2020 lúc 9:59

\(A=\left|x+5\right|+2019\)

Vì \(\left|x+5\right|\ge0\)với \(x\in Q\)

nên \(A=\left|x+5\right|+2019\ge2019\)

Dấu ' = ' xảy ra khi x = -5

Vậy giá trị nhỏ nhất của A là 2019 khi x = -5

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
17 tháng 4 2022 lúc 12:14

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

Bình luận (0)
KT
Xem chi tiết
NT
15 tháng 10 2021 lúc 22:02

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

Bình luận (1)
NL
16 tháng 10 2021 lúc 9:52

24

Bình luận (0)
H24
Xem chi tiết
DT
3 tháng 7 2016 lúc 19:41

a.\(-\left(x^2-x-6\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy Max của biểu thức = \(\frac{25}{4}\Leftrightarrow x=\frac{1}{2}\)

Chọn mình nha mình sẽ làm típ 1 bài nữa

Bình luận (0)
LK
Xem chi tiết
TT
Xem chi tiết
MT
24 tháng 5 2015 lúc 12:32

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

Bình luận (0)
NT
Xem chi tiết
HP
1 tháng 7 2016 lúc 21:26

\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)

\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)

\(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)

Vậy MaxA=5 khi x=1

\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)

Vậy MaxB=4 khi x=2

Bình luận (0)
OP
1 tháng 7 2016 lúc 21:24

a) \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(\left(x-1\right)^2-5\right)\)

\(=5-\left(x-1\right)^2\ge5\)

MIn A = 5 khi \(x-1=0=>x=1\)

b) \(4x-x^2\)

\(=-\left(x^2-4x+4-4\right)\)

\(=>-\left(\left(x-2\right)^2-4\right)\)

\(=4-\left(x-2\right)\ge4\)

MIN B = 4 khi \(x-2=0=>x=2\)

Ủng hộ nha tối rồi

Bình luận (0)
CM
Xem chi tiết
NN
Xem chi tiết