Tìm x biết
\(\frac{3}{4}.\frac{4}{6}.......\frac{2010}{4018}=1005.16^{1-x}\)
\(\frac{3}{4}.\frac{4}{6}.\frac{5}{8}...\frac{2010}{4018}=1005.16^{1-x}\)
\(\frac{3}{4}.\frac{4}{6}.\frac{5}{8}....\frac{2010}{4018}=1005.16^{1-x}\)
tìm x biết :
3/4.4/6.5/8 .......2010/4018 = 1005.16^1-x
giúp em với ạ
Tìm số hữu tỉ x,biết : \frac{x+6}{2010}+\frac{x+5}{2009}=\frac{x+4}{2008}+\frac{x+4}{2007}
1) Tìm x Biết
x-\(\frac{1}{3}\)=\(\frac{3}{4}\)
\(\frac{-1,25}{x}=\frac{1}{-8}\)
\(4\frac{1}{3}\div\frac{x}{4}=6:0,3\)
\((x-\frac{4}{9})^2=\frac{1}{4}\)
\(9^x\times81^x=3^{2010}\)
tặng 3 tym cho những người trả lời nhanh nhất trong vòng 2 ngày
Tìm x biết
a)\(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)
b)\(\left(\frac{1}{4}x-1\right)\)+\(\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+5\right)=3,5\)
Anh chỉ giải câu a thôi, câu b anh thấy nó bình thường mà.
Cộng vào mỗi phân số thêm 1 đơn vị được:
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\).
Tới đây tự làm tiếp nhá.
CMR: \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
tìm x biết:
\(|x-\frac{1}{3}|=|\left(-3,2\right)+\frac{2}{5}|\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)
\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)
\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)
\(\Rightarrow|x-\frac{1}{3}|=2.8\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)
tính lại kết quả nhé
\(\left|x-\frac{1}{3}\right|=\left|-3.2+\frac{2}{5}\right|=\left|-\frac{14}{5}\right|\)\(=\frac{14}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{14}{5}\\x-\frac{1}{3}=-\frac{14}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{47}{15}\\x=-\frac{37}{15}\end{cases}}\)
Vậy............
b,
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)
\(\Leftrightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1-\frac{x-3}{2009}+1-\frac{x-4}{2008}+1=0\)
\(\Leftrightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}-\frac{x-3-2009}{2009}-\frac{x-4-2008}{2008}=0\)
\(\Leftrightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Leftrightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> x-2012=0
=>x=2012
Vậy ..............
TK MK NHA
*****CHUC BN HOC GIỎI*****
3. Tìm x biết :
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
2. Tìm x nguyên biết :
\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1006}-1}{4}\)
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)
Tìm x, y, z biết \(\frac{\sqrt{x-2009}-1}{x-2009x}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{x-2011}=\frac{3}{4}\)
\(pt\Leftrightarrow\frac{1-\sqrt{x-2009}}{x-2009}+\frac{1-\sqrt{y-2010}}{y-2010}+\frac{1-\sqrt{z-2011}}{z-2011}=-\frac{3}{4}\)
\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{\sqrt{x-2009}}{x-2009}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{\sqrt{y-2010}}{y-2010}+\frac{1}{4}\right)+\left(\frac{1}{z-2011}-\frac{\sqrt{z-2011}}{z-2011}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x-2009}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{y-2010}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)+\left(\frac{1}{z-2011}-\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)
Xảy ra khi \(\hept{\begin{cases}\frac{1}{\sqrt{x-2009}}=\frac{1}{2}\\\frac{1}{\sqrt{y-2010}}=\frac{1}{2}\\\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}}\)