Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HH
Xem chi tiết
HT
Xem chi tiết
CM
10 tháng 2 2019 lúc 16:42

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

Bình luận (0)
NP
Xem chi tiết
DN
Xem chi tiết
TD
25 tháng 5 2019 lúc 15:17

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)

Bình luận (0)
HL
Xem chi tiết
NT
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Bình luận (0)
TH
Xem chi tiết
TP
6 tháng 12 2015 lúc 16:36

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

Bình luận (0)
BQ
Xem chi tiết
H24
1 tháng 5 2018 lúc 21:24

M=(8x+3)/(4x^2+1) 
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1) 
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1 
=> min M = -1 khi x = -1 
mặt khác: 
M = -1 + (2x +2)^2/(4x^2 +1) 
M = 4 - 5 + (2x +2)^2/(4x^2 +1) 
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1) 
M = 4 - (16x^2 - 8x +1)/(4x^2 +1) 
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4 
=> max M = 4 khi x = 1/4 

Bình luận (0)
DT
Xem chi tiết
NK
Xem chi tiết
DH
21 tháng 7 2017 lúc 11:03

Ta có :

\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2

\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2

Bình luận (0)
NV
21 tháng 7 2017 lúc 11:02

đặt \(A=\frac{4x+3}{x^2+1}=a\)

<=>ax2+a=4x+3

<=>ax2-4x+a-3=0

\(\Rightarrow\Delta=16-4\left(a-3\right)a\ge0\)

\(\Leftrightarrow4a^2-12a-16\le0\)

\(\Leftrightarrow\left(2a-3\right)^2-25\le0\)

\(\Leftrightarrow\left(2a+2\right)\left(2a-8\right)\le0\)

\(\Leftrightarrow\hept{\begin{cases}2a+2\ge0\\2a-8\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le4\end{cases}}}\)

Vậy Min A=-1;Max A=4

Bình luận (0)
VP
27 tháng 3 2018 lúc 16:04

có thể giải bài này theo\(\Delta\)

Bình luận (0)