CTR : [2n+1].[2n+2] \(⋮\)3 voi moi STN n
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chung minh voi moi STN n cac so sau la 2 so nguyen to cung nhau
2n+3 va 4n+8
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
Ta thấy
3 ; 8 là 2 số nguyên tố cùng nhau
Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .
Các số có ước chung lớn nhất là 1 thì là số nguyên tố .
1)CTR voi moi STN n thi A=16^n-15n-1 chia het cho 15.
Chung to rang cac phan so sau toi gian voi moi STN n
a)n+1/2n+3 b)2n+3/4n+8
a) Ta có : \(\frac{n+1}{2n+3}\)tối giản <=> ƯCLN(n+1;2n+3) \(\in\){1; -1}
Gọi d là ƯCLN(n+1; 2n+3)
=> n + 1 \(⋮\)d => 2(n + 1) \(⋮\) d => 2n + 2 \(⋮\) d
2n + 3 \(⋮\) d
=> (2n + 3) - (2n + 2) = 1 \(⋮\) d => d \(\in\){1; -1}
Vậy \(\frac{n+1}{2n+3}\)tối giản
gọi UCLN(n+1,2n+3)=đ (d thuộc N*)
Ta có:{n+1 chia hết cho d=>2n+2 chia hết cho d
{ 2n+3 chia hết cho d
Xét[(2n+3)-(2n+2)] chia hết cho d
=>1 chia hết cho d
=> d=1
=>UCLN(n+1,2n+3)=1
Vậy n+1/2n+3 là phân số tối giảm với mọi n
b,
gọi UCLN(2n+3,4n+8)=đ (d thuộc N*)
Ta có:{n+1 chia hết cho d=>2n+2 chia hết cho d
{ 2n+3 chia hết cho d
Xét[(2n+3)-(2n+2)] chia hết cho d
=>1 chia hết cho d
=> d=1
=>UCLN(n+1,2n+3)=1
Vậy n+1/2n+3 là phân số tối giảm với mọi n
CMR voi moi so tu nhien n thi
A=5^2n+1*2^n+2+3^n+2*2^2n+1 chia het cho 38
cho a va b la hai so tu nhien. biet a chia cho 5 du 1 ; b chia cho 5 du 4. chung minh (b-a)(b+a) chia cho 4
chung minh 2n^2(n+1)-2n(n^2+n-3) chia het cho 6 voi moi so nguyen n
chung minh n( 3-2n)-(n-1)(1+4n)-1 chia het cho 6 voi moi so nguyen n
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
a,CMR:Bieu thuc n(2n-3)-2n(n+1) luon chia het cho 5 voi moi n la so nguyen
b,CMR:Bieu thuc (n-1)(n+4)-(n-4)(n+10) luon chia het cho 6 voi moi so nguyen n
1. Cho STN a biết a:18 dư 12. Hỏi a:9 dư mấy???
2. Cho B= 6 +m+n+12(m,n ∈ N) với đ/k nào của m,n thì B ⋮ 3, B ⋮/ ⋮
3. Cho A= 2+22+23+...+250 CTR A⋮ 3, A ⋮ 31
4. CTR abcabc ⋮ 13
5. Tìm n ∈ N sao cho:
a) n+5 ⋮ n -2
b) 2n +7⋮ n+1
c)3n ⋮ 5 - 2n
6. Biết n-1 ⋮ 15 còn 1001 ⋮n + 1. Tìm n ∈ N
Bài 1: Theo đề, ta có : a : 18 ( dư 12 ) ( a \(\in N\) )
\(\Rightarrow\) a : 2.9 ( dư 3+9 )
\(\Rightarrow\) a : 9 ( dư 3 )
Bài 2 : Theo đề, ta có : B = 6 + m + n + 12
B = ( m + n ) + ( 6 + 12 )
B = ( m + n ) + 18
Vì \(18⋮3\) nên khi ( m + n ) \(⋮\) 3 thì B \(⋮3\)
Ngược lại, khi ( m + n ) \(⋮̸\) 3 thì B \(⋮̸\) 3.
Bài 3:
Ta có : A = \(2+2^2+2^3+...+2^{49}+2^{50}\)
A = \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{49}+2^{50}\right)\)
A = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^{49}\left(1+2\right)\)
A = \(2.3+2^3.3+...+2^{49}.3\)
A = \(3\left(2+2^3+...+2^{49}\right)\) \(⋮\) 3
Ta có : A = \(2+2^2+2^3+2^4+2^5+...+2^{49}+2^{50}\)
A = \(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{46}+2^{47}+2^{48}+2^{49}+2^{50}\right)\)
A = \(2\left(1+2+2^2+2^3+2^4\right)+...+2^{46}\left(1+2+2^2+2^3+2^4\right)\)
A = 2 . 62 + ... + \(2^{46}.62\)
A = 62 ( 2 +...+ \(2^{46}\) )
A = 31 . 2( \(2+...+2^{46}\) ) \(⋮\) 31
Bài 4: Ta có : \(\overline{abcabc}\) = \(\overline{abc}000+\overline{abc}\) = \(\overline{abc}\left(1000+1\right)\) = \(\overline{abc}.1001\) = \(\overline{abc}.77.13\) \(⋮13\)
Vậy : \(\overline{abcabc}⋮13\)
Để mk làm bài 5 sau nha. Bây giờ đang bận
Bài 5:
a/ Ta có: \(n+5\) \(⋮\) n - 2 ( n \(\in\) N )
\(\Rightarrow\) n - 2 +7 \(⋮\) n - 2
\(\Rightarrow\) 7 \(⋮\) n - 2
\(\Rightarrow\) n - 2 \(\in\) Ư(7) = { 1 ; 7 }
\(\Rightarrow n\in\left\{3;9\right\}\)
b/ Ta có : 2n + 7 \(⋮\) n + 1 ( n \(\in\) N )
\(\Rightarrow\) 2( n + 1 ) + 5 \(⋮\) n + 1
\(\Rightarrow\) 5 \(⋮\) n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư (5) = { 1 ; 5 }
\(\Rightarrow\) n \(\in\) { 0 ; 4 }
Chúc bn hc tốt!!!
chung to rang voi moi so tu hien n thi 2n+1 va 2n^2 -1 la hai so nguyen to
cac phan so \(\frac{n+1}{2n+3}\)va\(\frac{2n+1}{2n+3}\)la cac phan so toi gian voi moi so nguyen n khac -1
Gọi UCLN(n+1,2n+3) = d
=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - (2n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(n+1,2n+3) = 1
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
Gọi UCLN(2n+1,2n+3) = d
=> 2n+1 chia hết cho d
2n+3 chia hết cho d
=> 2n+3 - (2n+1) chia hết cho d
=> 2 chia hết cho d
=> d \(\in\){1;2}
Vì 2n+1 lẻ nên d = 1
=>UCLN(2n+1,2n+3) = 1
Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản