Những câu hỏi liên quan
TP
Xem chi tiết
NT
13 tháng 4 2021 lúc 22:34

a) Xét ΔBAD vuông tại A và ΔBHA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔBAD\(\sim\)ΔBHA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BD\)(đpcm)

Bình luận (0)
H24
14 tháng 4 2021 lúc 6:14

undefined

Bình luận (3)
BC
Xem chi tiết
NT
9 tháng 12 2021 lúc 22:54

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

Bình luận (0)
TT
Xem chi tiết
NT
15 tháng 12 2022 lúc 23:24

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

AM=BC/2=6,5cm

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADMElà hình chữ nhật

=>AM=DE

c: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của BA

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do do: E là trung điểm của AC
Xét ΔABC có D,E lần lượt là trung điểm của AB,AC

nên DE là đường trung bình

=>DE//BC

=>BDEC là hình thang

Bình luận (0)
HN
Xem chi tiết
DL
16 tháng 10 2016 lúc 19:11

trong tg vuông dg trung tuyen thuoc canh huyen = 1/2 canh huyen

( sach gk có cm)

Bình luận (0)
PC
Xem chi tiết
TL
Xem chi tiết
EQ
Xem chi tiết
AH
Xem chi tiết
TM
1 tháng 6 2023 lúc 10:04

Gọi \(I\) là giao điểm của \(AM\) và \(BN\Rightarrow IB=\dfrac{2}{3}BN;IN=\dfrac{1}{3}BN;AI=\dfrac{2}{3}AM;IM=\dfrac{1}{3}AM\)

\(\Delta ANB\) vuông tại \(A:AI^2=IB.IN\) \(\Rightarrow AI^2=\dfrac{2}{3}BN\cdot\dfrac{1}{3}BN=\dfrac{2}{9}BN^2\)

Ta cũng có trong \(\Delta ANB:AB^2=IB.BN\)

\(\Leftrightarrow a^2=\dfrac{2}{3}BN\cdot BN=\dfrac{2}{3}BN^2\Leftrightarrow BN^2=\dfrac{3}{2}a^2\)

Suy ra : \(AI^2=\dfrac{2}{9}BN^2=\dfrac{2}{9}\cdot\dfrac{3}{2}a^2=\dfrac{1}{3}a^2\).

Lại có : \(AI=\dfrac{2}{3}AM\Rightarrow AM^2=\dfrac{9}{4}AI^2=\dfrac{9}{4}\cdot\dfrac{1}{3}a^2=\dfrac{3}{4}a^2\)

\(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) của \(\Delta ABC\) vuông tại \(A\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow BC^2=4AM^2=4\cdot\dfrac{3}{4}a^2=3a^2\)

\(\Rightarrow BC=\sqrt{3a^2}=a\sqrt{3}\)

\(\Delta ABC\) vuông tại \(A\) có : \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{3a^2-a^2}=a\sqrt{2}\)

Vậy : \(AC=a\sqrt{2};BC=a\sqrt{3}\)

Bình luận (0)
TM
1 tháng 6 2023 lúc 10:04

Bình luận (0)
LL
Xem chi tiết
NT
2 tháng 10 2021 lúc 21:01

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

Bình luận (0)