Gpt a/1-ax=b/1-bx
GPT với ẩn số là x:
\(\frac{a}{1-bx}=\frac{b}{1-ax}\)
Đẳng thức tương đương: \(a-a^2x=b-b^2x\Leftrightarrow a-b=x\left(a^2-b^2\right)\)
+) TH1: a=b hoặc a=-b thì 0=0.x, vậy phương trình có vô số nghiệm
+) TH2: \(a\ne b\) thì \(x=\frac{a-b}{\left(a-b\right)\left(a+b\right)}=\frac{1}{a+b}\)
ĐK: \(x\ne\frac{1}{a};\frac{1}{b}\)
pt <=> \(a-a^2x=b-b^2x\Leftrightarrow\left(a^2-b^2\right)x=a-b\)(1)
TH1: \(a^2-b^2=0\Leftrightarrow\orbr{\begin{cases}a=b\\a=-b\end{cases}}\)
Với a = b; Ta có: (1) trở thành: 0x = 0 => phương trình có vô số nghiệm
Với a = - b; Ta có: (1) trở thành: 0x = 2a \(\ne\)0 => phương trình vô nghiệm
TH2: \(\hept{\begin{cases}a\ne b\\a\ne-b\end{cases}}\)
Ta có: pt (1) <=> \(x=\frac{1}{a+b}\)
Vậy:....
Em nghĩ là nên giải thêm điều kiện \(\frac{1}{a+b}\ne\frac{1}{a};\frac{1}{a+b}\ne\frac{1}{b}\Rightarrow a,b\ne0\)
1, Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c,d là các hệ số nguyên. CMR nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a,b,c,d đều chia hết cho 5
2, GPT nghiệm nguyên: \(5x^2+8y^2=20412\)
\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)
Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)
\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)
Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)
Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)
Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)
Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)
\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)
\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\) (0<a<b<2a)
Tham khảo:
\(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\Rightarrow ax=\sqrt{\dfrac{2a}{b}-1}\)
\(\Rightarrow\left\{{}\begin{matrix}1+ax=\dfrac{\sqrt{2a-b}+\sqrt{b}}{\sqrt{b}}\\1-ax=\dfrac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1-ax}{1+ax}=\dfrac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}+\sqrt{2a-b}}=\dfrac{\left(\sqrt{b}-\sqrt{2a-b}\right)^2}{2\left(b-a\right)}\)
Lại có:
\(\dfrac{1+bx}{1-bx}=\dfrac{a+\sqrt{2ab-b^2}}{a-\sqrt{2ab-b^2}}=\dfrac{a^2-\left(2ab-b^2\right)}{\left(a-\sqrt{2ab-b^2}\right)^2}=\dfrac{\left(a-b\right)^2}{\left(a-\sqrt{2ab-b^2}\right)^2}\)
\(\Rightarrow\sqrt{\dfrac{1+bx}{1-bx}}=\dfrac{b-a}{a-\sqrt{2ab-b^2}}\)
\(\Rightarrow A=\dfrac{1-ax}{1+ax}.\sqrt{\dfrac{1+bx}{1-bx}}=\dfrac{\left(\sqrt{b}-\sqrt{2a-b}\right)^2}{2a-2\sqrt{2ab-b^2}}=\dfrac{2a-2\sqrt{2ab-b^2}}{2a-2\sqrt{2ab-b^2}}=1\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\) (0<a<b<2a)
1.tìm a,b để:
a)\(x^3+ax+bx+6⋮\left(x-1\right)\)
b)\(x^4+ax^3+bx^2+5x+1⋮\left(x+1\right)^2\)
c)\(^{x^4+3x^3+ax^2+bx+5⋮\left(x-2\right)^2}\)
d)\(x^4+10x^3+ax^2+bx+7⋮\left(x+2\right)^2\)
e)\(x^4+ax^3+5x^2+bx+1⋮x-1\)
2.Cho a+b+c=0.tính\(\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
bài 2:
\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)
\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)
sao nữa nhỉ :v
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
Tính giá trị của biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\) với \(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\left(0< a< b< 2a\right)\)
1, PTDTTNT
ax^2-ax+bx^2-bx+a+b
ax2-ax+bx2-bx+a+b
(ax2+bx2)-(ax+bx)+(a+b)
x2(a+b)-x(a+b)+(a+b)
(a+b)*(x2-x+1)
a)\(x^3+ax+bx+6⋮\left(x-1\right)\)
b)\(x^4+ax^3+bx^2+5x+1⋮\left(x+1\right)^2\)
c)\(^{x^4+3x^3+ax^2+bx+5⋮\left(x-2\right)^2}\)
d)\(x^4+10x^3+ax^2+bx+7⋮\left(x+2\right)^2\)
e)\(x^4+ax^3+5x^2+bx+1⋮x-1\)
Cho a+b+c=0.tính\(\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)