Những câu hỏi liên quan
LY
Xem chi tiết
H24
10 tháng 12 2020 lúc 20:40

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

3A=3+3^2+3^3+....+3^2020

3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

2A= 3^2020-1

⇒ A =( 3^2020-1):2

Bình luận (0)

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

⇒3A=3+3^2+3^3+....+3^2020

⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

⇒2A= 3^2020-1

⇒ A =( 3^2020-1):2

Bình luận (0)
LT
Xem chi tiết
MH
14 tháng 10 2021 lúc 19:47

\(A=1+3+3^2+3^3+...+3^{2018}+3^{2019}\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{2018}\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)\) ⋮4

⇒A⋮4

Bình luận (0)
H24
Xem chi tiết
CP
Xem chi tiết
NT
8 tháng 11 2021 lúc 21:53

\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)⋮4\)

Bình luận (0)
CA
Xem chi tiết
H24
17 tháng 4 2021 lúc 16:50

Ta có: B = (2018 + 2019)/(2019 + 2020) = (2018 + 2019)/4039 = 2018/4039 + 2019/4039
Ta thấy : 2018/2019 > 2018/4039
            2019/2020 > 2019/4039
=> 2018/2019 + 2019/2020 > 2018/4039 > 2019/4039
=> 2018/2019 + 2019/2020 > (2018 + 2019)/(2019 + 2020)
=> A  > B

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
12 tháng 2 2021 lúc 9:55

Ta có: \(C=\dfrac{2019-2018}{2019+2018}\)

\(\Leftrightarrow C=\dfrac{\left(2019-2018\right)\left(2019+2018\right)}{\left(2019+2018\right)^2}\)

\(\Leftrightarrow C=\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}\)

Ta có: \(\left(2019+2018\right)^2=2019^2+2018^2+2\cdot2019\cdot2018\)

\(2019^2+2018^2=2019^2+2018^2+0\)

Do đó: \(\left(2019+2018\right)^2>2019^2+2018^2\)

\(\Leftrightarrow\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}< \dfrac{2019^2-2018^2}{2019^2+2018^2}\)

\(\Leftrightarrow C< D\)

Bình luận (0)
H24
Xem chi tiết
NH
11 tháng 5 2019 lúc 17:42

\(A=\frac{2018^{2019}-1}{2018^{2019}+1}=\frac{2018^{2019}+1-2}{2018^{2019}+1}=\frac{2018^{2019}+1}{2018^{2019}+1}-\frac{2}{2018^{2019}+1}=1-\frac{2}{2018^{2019}+1}\)

\(B=\frac{2018^{2019}}{2018^{2019}+2}=\frac{2018^{2019}+2-2}{2018^{2019}+2}=\frac{2018^{2019}+2}{2018^{2019}+2}-\frac{2}{2018^{2019}+2}=1-\frac{2}{2018^{2019}+2}\)

Ta có: \(\frac{2}{2018^{2019}+1}>\frac{2}{2018^{2019}+2}\)

\(\Rightarrow1-\frac{2}{2018^{2019}+1}< 1-\frac{2}{2018^{2019}+2}\)

\(\Rightarrow A< B\)

Vậy .....

Bình luận (0)
PO
Xem chi tiết
ET
Xem chi tiết
H24
12 tháng 4 2018 lúc 20:54

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A

Bình luận (0)
LH
Xem chi tiết
PQ
12 tháng 4 2018 lúc 17:31

Ta có : 

\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Vì : 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)

Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế ) 

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Bình luận (0)
TG
12 tháng 4 2018 lúc 17:33

Mình thấy là A<B.

Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019

Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B

=> A<B

Bình luận (0)
AK
12 tháng 4 2018 lúc 17:34

Ta có : 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)

\(\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\)

\(\Rightarrow\frac{2017+2018}{2018+2019}< B\)

\(\Rightarrow A< B\)

Chúc bạn học tốt !!! 

Bình luận (0)