cho x/y=-2019,chứng tỏ rằng: x+y/x-y<1<x-y/x+y với y khác 0 và x khác + y
Chứng tỏ không thể tồn tại các số tự nhiên x, y,z sao cho ( x+y).(y+z).(z+x)+ 2018\(^{2019}\)=2019\(^{2018}\)
Cho x, y ∈ Q. Chứng tỏ rằng |x - y| ≥ |x| - |y|
Theo câu a ta có: |x - y| + |y| ≥ |x – y + y| = |x| ⇒ |x - y| ≥ |x| - |y|.
Cho x, y ∈ Q. Chứng tỏ rằng |x + y| ≤ |x| + |y|.
Với mọi x, y ∈ Q ta luôn có x ≤ |x| và -x ≤ |x|;
y ≤ |y| và -y ≤ |y| ⇒ x + y ≤ |x| + |y| và -x – y ≤ |x| + |y|
hay x + y ≥ -(|x| + |y|).
Do đó –(|x| + |y|) ≤ x + y ≤ |x| + |y|.
Vậy |x + y| ≤ |x| + |y|.
(Dấu “=” xảy ra khi xy ≥ 0.
Chứng tỏ rằng không tồn tại các số nguyên x , y , z sao cho :
| x - 2y | + | 4y - 5z | + | z - 3x | = 2019
Các bạn giúp mình mới nhé !
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2019+2y-4z-2x\)
Xét \(a< 0\) ta có:\(\left|a\right|+a=-a+a=0⋮2\)
Xét \(a=0\) ta có:\(\left|a\right|+a=0⋮2\)
Xét \(a>0\) ta có:\(\left|a\right|+a=a+a=2a⋮2\)
Vậy với mọi a thì \(\left|a\right|+a\) luôn chia hết cho 2
Áp dụng vào bài ta có:\(\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x⋮2\)
mà \(2019+2y-4z-2x\) không chia hết cho 2,vô lí
Vậy không tồn tại số nguyên x,y,z thỏa mãn
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2019+x-2y+4y-5z\)\(+z-3x\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x=2019\)\(+\left(x-3x\right)+\left(4y-2y\right)+\left(z-5z\right)\)
\(\Rightarrow\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019+\left(-2x\right)+\left(2y\right)+\left(-4z\right)\)
+)Ta có:
+)Xét \(x< 0\Rightarrow\left|x\right|+x=\left(-x\right)+x=0⋮2\left(1\right)\)
+)Xét \(x=0\Rightarrow\left|x\right|+x=x+x=0+0=0⋮2\left(2\right)\)
+)Xét \(x>0\Rightarrow\left|x\right|+x=x+x=2x⋮2\left(3\right)\)
+)Từ (1);(2) và (3)
\(\Rightarrow\left|x\right|+x⋮2;\forall x\)
+)Ta lại có:\(\left(-2x\right)⋮2;2y⋮2;\left(-4z\right)⋮2\)
\(\Rightarrow\left(-2x\right)+2y+\left(-4z\right)⋮2\)
+)Ta có:\(\left|x\right|+x⋮2;\forall x\)
\(\Rightarrow\left|x-2y\right|+x-2y+\left|4y-5z\right|+4y-5z+\left|z-3x\right|+z-3x⋮2\)
\(\Rightarrow2019+\left(-2x\right)+2y+\left(-4z\right)⋮2\)
Mà \(2019+\left(-2x\right)+2y+\left(-4z\right)⋮̸2\)(vì \(2019⋮̸2;\left(-2x\right)+2y+\left(-4z\right)⋮2\))
Vậy không tồn tại các số x;y;z thỏa mãn \(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2019\left(ĐPCM\right)\)
Chúc bn học tốt
Cho x+y/x-y = -4. chứng tỏ rằng x/y = 3/5
Cho x+y/ x-y = -4 . Chứng tỏ rằng x/y = 3/5
Ta có:
\(\frac{x+y}{x-y}=-4\Rightarrow x+y=-4\times\left(x-y\right)\)
\(\Rightarrow x+y=-4\times x-\left(-4\times y\right)\)
\(\Rightarrow5\times x=3\times y\Rightarrow\frac{x}{y}=\frac{3}{5}\)
Cho x, y ∈ Z. Hãy chứng tỏ rằng: Nếu x – y > 0 thì x > y
Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:
x – y > 0
x > 0 + y
hay x > y (điều phải chứng minh)
Cho x, y ∈ Z. Hãy chứng tỏ rằng: Nếu x > y thì x – y > 0
Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:
x > y
x > y + 0
x – y > 0 (điều phải chứng minh)
Chứng minh rằng nếu \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)
ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)
\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)
\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)
Vì (1) luôn không âm mà a,b,c≠0
nên x=y=z=0
⇒\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)
mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)
nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)