Những câu hỏi liên quan
H24
Xem chi tiết
GT
Xem chi tiết
HT
Xem chi tiết
SL
12 tháng 2 2018 lúc 8:55

a) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản.

b) Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 không chia hết cho 2

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)

\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.

c) Gọi d là ƯCLN(3n + 2, 5n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)

\(\Rightarrow\frac{3n+2}{5n+3}\) là phân số tối giản.

Bình luận (0)
SN
28 tháng 12 2017 lúc 14:43

Gọi d là ƯCLN của n + 1 , 2n + 3 

=> n + 1 chia hết cho d , 2n + 3 chia hết cho d

=> 2(n + 1)  chia hết cho d , 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d

=> 2n + 3 - 2n - 2 chia HẾT CHO d

=> 1 chia hết cho d

=> d = 1

Vậy n + 1/2n + 3 tối giản với mọi số n

b,c tương tự 

Bình luận (0)
TT
28 tháng 12 2017 lúc 14:56

HÀ THANH THẢO:

Bài này dài quá. Thôi chiều ý bạn vậy!!!

a, n + 1/ 2n + 3

Ta gọi a là ƯCLN (n + 1; 2n + 3)

Theo bài ra, ta có:

n + 1 \(⋮\)a; 2n + 3 \(⋮\)a

=> 2n + 1 chia hết cho a; 2n + 3 chia hết cho a

Ta lại có:

2n + 2 chia hết cho a; 2n + 3 chia hết cho a

=> 2n + 3 - 2n + 2 \(⋮\)a

=>  1 \(⋮\)a

Vậy a = 1

Câu b và c: bạn tự áp dụng vào:

^_^, Chúc bạn học tốt!!!

Bình luận (0)
TN
Xem chi tiết
NL
3 tháng 1 2024 lúc 21:44

a,

Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)

Các câu sau em biến đổi tương tự

Bình luận (0)
PL
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
ND
3 tháng 8 2023 lúc 19:42

\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .

Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)

            Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)

\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)

   Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)

\(=\left(n+1\right)^2\) 

Vì n thuộc N nên tổng của A là : một số chính phương . 

\(c)\) Ta có : Số hạng của dãy số B là : n

     Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)

\(=n.\left(n+1\right)\) 

Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 . 

Ta thấy chúng đều không thoả mãn .

vậy.............

            

Bình luận (0)
NT
3 tháng 8 2023 lúc 19:30

Bạn xem lại câu A+B mới là số chính phương k?

Bình luận (0)
LP
3 tháng 8 2023 lúc 20:11

 Câu a) mình không hiểu đề bài cho lắm nên mình làm câu b) với c) nhé:

 Ta sẽ chứng minh \(A=1+3+5+...+\left(2n-1\right)=n^2\) bằng quy nạp. Với \(n=1\) thì \(1=1^2\), luôn đúng. Giả sử khẳng định đúng đến \(n=k\). Với \(n=k+1\) thì ta có:

 \(A=1+3+5+...+\left(2k+1\right)\)

 \(A=1+3+5+...+\left(2k-1\right)+\left(2k+1\right)\)

 \(A=k^2+2k+1\)

 \(A=\left(k+1\right)^2\) là SCP.

Vậy khẳng định được chứng minh. \(\Rightarrow\) A là SCP với mọi n (đpcm).

c) Ta có \(B=2+4+6+...+2n\)

\(B=2\left(1+2+3+...+n\right)\)

 Ta sẽ chứng minh \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\) nhưng không phải bằng quy nạp vì mình nghĩ bạn nên biết nhiều cách khác nhau để chứng minh một đẳng thức. Mình sẽ dùng phương pháp đếm bằng 2 cách để chứng minh điều này.

 Ta xét 1 nhóm gồm \(n+1\) người, mỗi người đều bắt tay đúng 1 lần với 1 người khác. Khi đó ta sẽ tính số cái bắt tay đã xảy ra bằng 2 cách:

  Cách 1: Ta chọn ra 1 người, gọi là người số 1, bắt tay với \(n\) người khác. Sau đó ta chọn ra người số 2, bắt tay với \(n-1\) người khác (không tính người số 1). Chọn ra người số 3, bắt tay với \(n-2\) người (không tính người số 1 và 2). Cứ tiếp tục như thế, cho đến người thứ \(n-1\) thì sẽ có 1 cái bắt tay với người thứ \(n\). Do đó số cái bắt tay đã xảy ra là \(1+2+...+n\)

 Cách 2: Số cái bắt tay chính là số cách chọn 2 người (không kể thứ tự) trong n người đó. Số cách chọn ra người thứ nhất là \(n+1\), chọn ra người thứ hai là \(n\). Do đó số cách chọn 2 người có kể thứ tự sẽ là \(n\left(n+1\right)\). Nhưng do ta không tính thứ tự nên số cái bắt tay đã xảy ra là \(\dfrac{n\left(n+1\right)}{2}\)

 Do vậy, ta có \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

 Như thế, \(B=2\left(1+2+...+n\right)=2.\dfrac{n\left(n+1\right)}{2}=n\left(n+1\right)\) không thể là số chính phương, bởi vì: \(n^2=n.n< n\left(n+1\right)< \left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

 

Bình luận (0)
NL
Xem chi tiết
LA
18 tháng 11 2016 lúc 20:10

làm gì có x 

đề bài kiểu gì vậy ?????????????????????

Bình luận (0)
KS
30 tháng 7 2017 lúc 13:42

ko có thì làm sao cho x thuộc n dc ? [ hihi ko có kí tự thuộc trên máy tính ]

hay là bn có chép  lun đề ko vậy ??????????????????????????

Bình luận (0)
NH
30 tháng 7 2017 lúc 14:03

chang co j hay

Bình luận (0)
DP
Xem chi tiết
MN
12 tháng 3 2019 lúc 21:04

Gọi d là ƯCLN của 2n + 3 và n + 1

=> \(\left\{{}\begin{matrix}2n+3⋮d\\n+1⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2n+3⋮d\\2n+2⋮d\end{matrix}\right.\)

=> (2n + 3) - (2n + 2) ⋮ d

=> 1 ⋮ d

=> d = 1

=> ƯCLN (2n + 3; n + 1) = 1

=> \(\dfrac{2n+3}{n+1}\) là phân số tồi giản

Bình luận (0)