Những câu hỏi liên quan
TD
Xem chi tiết
NA
Xem chi tiết
ZZ
1 tháng 8 2019 lúc 14:23

\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a-\sqrt{a}\right)\left(a\sqrt{a}+1\right)}{\left(a-\sqrt{a}\right)\left(a+\sqrt{a}\right)}\)

\(=\frac{a^2\cdot\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}+a-a^2-\sqrt{a}\right)}{a^2-a}\)

\(=\frac{2a^2-2a}{a^2-a}\)

\(=2\)( 1 )

\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\left(\frac{\sqrt{a}}{1}-\frac{1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\right)\)

\(=\frac{a-1}{\sqrt{a}}\cdot\frac{2\left(a+1\right)}{a-1}\)

\(=\frac{2\left(a+1\right)}{\sqrt{a}}\) ( 2 )

Cộng ( 1 ) và ( 2 ) lại thì ta được biểu thức ban đầu:

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}\)

Câu b,c em chịu:((

P/S:e ko bt đúng hay sai đâu ạ

Bình luận (0)
BH
1 tháng 8 2019 lúc 15:14

Mk giải nốt phần còn lại nha

sai thì thông cảm

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}=7\Leftrightarrow2a+2=5\sqrt{a}\)

\(\Leftrightarrow2a-5\sqrt{a}+2=0\)

\(\Leftrightarrow\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{4}\\a=4\end{cases}}\)

\(2+\frac{2\left(a+1\right)}{\sqrt{a}}>6\)\(\Rightarrow2a+2>4\sqrt{a}\Rightarrow2\left(a+1-2\sqrt{a}\right)>0\)

\(\Leftrightarrow\left(a+1-2\sqrt{a}\right)>0\Leftrightarrow\left(\sqrt{a}-1\right)^2>0\)

\(\Leftrightarrow a\ne1;a\ge0\)

Bình luận (0)
SS
Xem chi tiết
DH
25 tháng 5 2018 lúc 10:00

ĐKXĐ a>0 và a≠1

Rút gọn được A=2+2(a+1)/√a

A=7 → 2+2(a+1)/√a=7→2a-5√a+2=0, giải ra a=4 hoặc a=1/4.

Do a≠1 nên (√a-1)²>0 → a+1>2√a, do đó A>2+2.2√a/√a=6. Vậy A>6 với mọi a>0 và a≠1

Bình luận (0)
SS
25 tháng 5 2018 lúc 11:10

Bản trả lời câu a ra hộ mình đi

Bình luận (0)
DH
25 tháng 5 2018 lúc 12:31

Viết bằng điện thoại nên hơi khó trình bày, c dựa vào a√a+1=(√a+1)(a-√a+1), a√a-1=(√a-1)(a+√a+1), 

Bình luận (0)
NH
Xem chi tiết
TL
7 tháng 8 2016 lúc 19:37

Bạn có thể đăng từng bài k như thế nhìn đã sợ ai làm

Bình luận (0)
NT
7 tháng 8 2016 lúc 20:15

1)đặt nhân tử chung quy đồng là xong

2)phân tích x+2cănx-3=(1-cănx)(3+cănx)

3)2a+căn a đặt căn a ra r rút gọn

Bình luận (0)
NA
Xem chi tiết
LL
Xem chi tiết
PD
26 tháng 5 2018 lúc 22:03

xin 1 tích và t sẽ làm " đúng 100% 

Bình luận (0)
LL
26 tháng 5 2018 lúc 22:11

ok b ơi b làm nhanh hộ mình với mình đang cần gấp

Bình luận (0)
TT
Xem chi tiết
KT
18 tháng 7 2018 lúc 20:18

a)  \(A=\left(\sqrt{6}+\sqrt{10}\right).\left(\sqrt{5}-\sqrt{3}\right)\)

         \(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

         \(=2\sqrt{2}\)

  \(B=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}+1\)  

       \(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+1\)

       \(=\frac{4}{x-4}+1\)

       \(=\frac{4}{x-4}+\frac{x-4}{x-4}=\frac{x}{x-4}\)

Bình luận (0)
NA
Xem chi tiết
TN
Xem chi tiết
LU
13 tháng 1 2016 lúc 21:23

Bạn chỉ mình cách viết phân số đi, mình làm ra luôn cho. 

Bình luận (0)
NL
31 tháng 1 2016 lúc 8:50

vào chữ fx rồi chọn biểu tượng phân số là xong

Bình luận (0)
PC
28 tháng 7 2016 lúc 12:48

mấy bài này cũng hơi khó

Bình luận (0)
NA
Xem chi tiết
FN
1 tháng 6 2018 lúc 21:29

a) ĐKXĐ :

\(\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)

b) Với \(a\ge0\) và \(a\ne4\)

\(A=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)

\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)

Để A > 2

thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}>2\)

Ta có :

\(\frac{\sqrt{a}-4}{\sqrt{a}-2}-2\)

\(=\frac{\sqrt{a}-4-2\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)

\(=\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\)

\(\)\(=\frac{-\sqrt{a}}{\sqrt{a}-2}\)

+) \(-\sqrt{a}< 0\forall a\)  \(\Rightarrow a>0\)

+) \(\sqrt{a}-2< 0\)   \(\Leftrightarrow a< 4\)

Vậy để A > 2 thì 0 < a < 4

c) Để A = 5

thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}=5\)

\(\frac{\left(\sqrt{a}-4\right)-5\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)}=0\)

\(\frac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}=0\)

\(\Rightarrow-4\sqrt{a}+6=0\)

\(\Rightarrow a=\frac{9}{4}\)( TMĐKXĐ )

Vậy để A = 5 thì a = 9/4

Bình luận (0)
GN
1 tháng 6 2018 lúc 21:38

a, A xđ <=> \(\hept{\begin{cases}\sqrt{a}+3\ne0\\a+\sqrt{a}-6\ne0\\2-\sqrt{a}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne2\\a\ne4\end{cases}};a\ne-3\)-3

b, rút gọn: A=\(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)để A> 2 <=> \(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)>2 <=> 1+\(\frac{-2}{\sqrt{a}-2}\)>2 <=> \(\frac{\sqrt{a}}{2-\sqrt{a}}\)>0

mà a\(\ge\)0 <=> \(\sqrt{a}\ge0\)=> \(2-\sqrt{a}\)>0 <=> a<4 

kết hợp với điều kiện, ta được: \(0\le a< 4;a\ne2\)

c, để A = 5 thì \(\frac{-2}{\sqrt{a}-2}\)+1=5 

<=>  \(\frac{-2}{\sqrt{a}-2}\)=4 

<=> \(a=\frac{9}{4}\)(t/m)

KL..............

Bình luận (0)