Những câu hỏi liên quan
NC
Xem chi tiết
H24
25 tháng 9 2020 lúc 19:44

Đề thiếu rồi nhé: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Quá ez:))

Ta có: \(a^2+b^2+c^2+d^2+e^2\)

\(=\left(\frac{a^2}{4}+b^2\right)+\left(\frac{a^2}{4}+c^2\right)+\left(\frac{a^2}{4}+d^2\right)+\left(\frac{a^2}{4}+e^2\right)\)

\(\ge2\sqrt{\frac{a^2}{4}\cdot b^2}+2\sqrt{\frac{a^2}{4}\cdot c^2}+2\sqrt{\frac{a^2}{4}\cdot d^2}+2\sqrt{\frac{a^2}{4}\cdot e^2}\)

\(=ab+ac+ad+ae=a\left(b+c+d+e\right)\)

Dấu "=" xảy ra khi: \(\frac{a}{2}=b=c=d=e\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
25 tháng 9 2020 lúc 19:49

Sửa đề a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae

Nhân 4 vào từng vế

<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0

<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ac + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0

<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> \(b=c=d=e=\frac{a}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
PN
9 tháng 3 2016 lúc 18:34

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)  \(\left(1\right)\)

\(\Leftrightarrow\)  \(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)

\(\Leftrightarrow\)  \(a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)

\(\Leftrightarrow\)  \(\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\)  \(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)  với mọi  \(a,\)  \(b,\)  \(c,\)  \(d,\)  \(e\in R\)  \(\left(2\right)\)

Bất đẳng thức  \(\left(2\right)\)  đúng, mà các phép biến đổi trên tương đương nên bất đẳng thức  \(\left(1\right)\)  được chứng minh.

Xảy ra đẳng thức trên khi và chỉ khi   \(b=c=d=e=\frac{a}{2}\), tức  \(a=2b=2c=2d=2e\)

Bình luận (0)
OY
Xem chi tiết
NH
Xem chi tiết
LC
3 tháng 11 2019 lúc 14:40

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)( luôn đúng )

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
H24
10 tháng 11 2019 lúc 20:28

Có nhiều cách biểu diễn:

VD

\(VT-VP=\frac{\left(a-b-c\right)^2+\left(a-d-e\right)^2+\left(b-c\right)^2+\left(d-e\right)^2}{2}\) (còn rất nhiều ...)

Bình luận (0)
 Khách vãng lai đã xóa
OY
Xem chi tiết
TN
19 tháng 10 2016 lúc 13:03

\(Bdt\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)

Nếu \(ac+bd< 0\). Bđt đúngNếu \(ac+bd\ge0\).Thì (1) tương đương:

\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)(luôn đúng)

Vậy bài toán được chứng minh.

Bình luận (0)
DM
Xem chi tiết
NT
31 tháng 1 2020 lúc 21:39

Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$
Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$
Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
BH
31 tháng 1 2020 lúc 21:10
https://i.imgur.com/8dtxBfV.jpg
Bình luận (0)
 Khách vãng lai đã xóa
NT
31 tháng 1 2020 lúc 21:43

Cách khác:

\( {a^2} + {b^2} + {c^2} + {d^2} + {e^2} \ge a\left( {b + c + d + e} \right)\\ \Leftrightarrow 4{a^2} + 4{b^2} + 4{c^2} + 4{d^2} + 4{e^2} - 4ab - 4ac - 4ad - 4ae \ge 0\\ \Leftrightarrow \left( {{a^2} - 4ab + 4{b^2}} \right) + \left( {{a^2} - 4ac + 4{c^2}} \right) + \left( {{a^2} - 4ad + 4{d^2}} \right) + \left( {{a^2} - 4ae + 4{e^2}} \right) \ge 0\\ \Leftrightarrow {\left( {a - 2b} \right)^2} + {\left( {a - 2c} \right)^2} + {\left( {a - 2d} \right)^2} + {\left( {a - 2e} \right)^2} \ge 0 \)

Bất đẳng thức trên đúng, mà các phép biến đổi là tương đương \(\rightarrow \text{ĐPCM}\)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2e\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
MT
17 tháng 4 2016 lúc 21:32

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

<=>(a2-4ab+4b2)+(a2-4ac+4c2)+(a2-4ad+4d2)+(a2-4ae+e2)\(\ge\)0

<=>(a-2b)2+(a-2c)2+(a-2d)2+(a-2e)2\(\ge\)0 (luôn đúng)

=>dpcm

Bình luận (0)
MT
17 tháng 4 2016 lúc 21:21

nhân 2 vế cho 4 chuyển qua lại rồi dùng HĐT bạn ạ

Bình luận (0)
LH
17 tháng 4 2016 lúc 21:26

Nếu nhân 2 vế cho 4 ra thế nào?

Bình luận (0)
KB
Xem chi tiết
H24
11 tháng 4 2017 lúc 7:02

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²

= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:

. a²/4 + c² ≥ ac
. a²/4 + d² ≥ ad
. a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

Bình luận (1)
TH
Xem chi tiết
LA
14 tháng 5 2016 lúc 22:07

chứng minh theo cách BĐT tương đương nha bạn

Bình luận (0)
NT
15 tháng 5 2016 lúc 9:45

câu hỏi tương tự

Bình luận (0)