Cho A= \(\frac{2n-1}{n+5}\)Tìm n ϵ N để A nguyên
Bài 1
a) Cho C=\(\frac{n}{n-2}\) ( n ϵ Z ; n khác 2)
Tìm tất cả các số nguyên n để C là số nguyên
b) Cho D\(\frac{n}{n+13}\) ( n ϵ Z ; n khác -13) ( và cũng hỏi như ở câu a)
Bài 2
a) Cho E = \(\frac{3n+5}{n+7}\) ( n ϵ Z ; n khác -7) Tìm n ϵ Z để E là số nguyên
b) Cho F = \(\frac{2n+9}{n-5}\) ( n ϵ Z ; n khác 5) Tìm n ϵ Z để F là số nguyên
Bài 3
a) Cho G = \(\frac{n+10}{2n-8}\) ( n khác 4) Tìm số tự nhiên n để G là số nguyên
b) Cho H = \(\frac{n-1}{3n-6}\) ( n khác 2) Tìm n ϵ Z để H là số nguyên
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Cho A= \(\dfrac{19n+1}{2n+3}\) . Tìm n để
a) A là phân số
b) Tìm n ϵ Z để A ϵ z
Tìm n ϵ N để A ϵ Z : A \(\frac{n+10}{2n+8}\)
Ta có
A \(\in\)Z <=> n+10 chia hết cho 2n+8
<=> 2n+20 chia hết cho 2n+8
<=> 2n+20-(2n+8) chia hết cho 2n+8
<=> 12 chia hết cho 2n+8
<=> 2n+8 \(\in\) Ư(12)
Mà n là số tự nhiên nên \(2n+8\ge8\)
Ta có \(Ư_{\left(12\right)}=\left(1;2;3;4;12;-1;-2;-3;-4;-6;-12\right)\)
=> 2n+8=12
=> 2n=4
=>n=2
Vậy số cần tìm là 2
gọi S là tổng các số nguyên n để 2n + 3/4n + 1 là phân số tối giản :
A, n ≠ 5k + 1 với k ϵ N B, n = 5k + 1 với k ϵ N
C , n ≠ 5k - 1 với k ϵ N C, n = 5k - 1 với k ϵ N
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a,Tìm n để A nhận giá trị nguyên
b,Tìm n để A là phân số tối giản
Cho biểu thức \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}\frac{4n-5}{n-3}\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là phân số tối giản
Cho A=\(\frac{2n+5}{n-1}\)(n thuộc N*, n khác 1). Tìm n để A là số nguyên tố.
\(A=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để A nguyên thì \(\frac{7}{n-1}\in Z\) Hay \(n-1\inƯ\left(7\right)\)
Bạn tự giải tiếp nk
Để A nguyên tức là mẫu chia hết cho tử bạn nk.
Cho biểu thức A= \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a, Rút gon A
b. Tìm số nguyên n để Á nhận giá trị là số nguyên.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.
Cho biểu thức A=\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a) Tìm n để A nhận giá trị nguyên
b) Tim n để A là phân số tối giản