Những câu hỏi liên quan
H24
Xem chi tiết
MM
Xem chi tiết
MM
3 tháng 10 2018 lúc 21:11

sửa đề: z+4>0

Bình luận (0)
PK
3 tháng 10 2018 lúc 21:35

Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0

a + b + c = 6

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)

\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)

Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)

Bình luận (0)
H24
25 tháng 11 2018 lúc 10:25

PaiN: Nhưng x,y,z là các số thực dương thì sao z âm đc?

Bình luận (0)
ND
Xem chi tiết
H24
16 tháng 8 2020 lúc 19:52

Xét: \(x^4+y^4-xy\left(x^2+y^2\right)=\left(x^2+y^2+xy\right)\left(x-y\right)^2\ge0\)

\(\Rightarrow x^4+y^4\ge xy\left(x^2+y^2\right)\)(*)

Tương tự với (*) ta có: \(\hept{\begin{cases}y^4+z^4\ge yz\left(y^2+z^2\right)\\z^4+x^4\ge zx\left(z^2+x^2\right)\end{cases}}\)

\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2\right)+z.xyz}=\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2+z^2\right)}=\frac{x+y+z}{x^2+y^2+z^2}\)

Ta có:\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) và \(x+y+z\ge3\sqrt[3]{xyz}=3\)

\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{1}{\frac{1}{3}\left(x+y+z\right)}\le1\)

Dấu "=" xảy ra khi x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
RZ
Xem chi tiết
ZZ
18 tháng 12 2019 lúc 20:54

\(\frac{16}{2x+y+z}=\frac{16}{x+x+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\)

Tương tự:

\(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z};\frac{16}{x+y+2z}\le\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\)

Cộng lại:

\(16P\le4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\Rightarrow P\le1\)

dấu "=" xảy ra tại \(x=y=z=\frac{3}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NL
19 tháng 3 2019 lúc 22:07

\(3-S=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\)

\(\Rightarrow3-S\ge\frac{9}{x+y+z+3}=\frac{9}{4}\)

\(\Rightarrow S\le3-\frac{9}{4}=\frac{3}{4}\)

\(\Rightarrow S_{max}=\frac{3}{4}\) khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
ND
Xem chi tiết
CT
14 tháng 8 2020 lúc 15:32

áp dụng bunhiacopski ta có: 

P^2 =< (1+1+1)(1/1+x^2 + 1/1+y^2+1/1+z^2)= 3(....)

đặt (...) =A

ta có: 1/1+x^2=< 1/2x

tt với 2 cái kia

=> A=< 1/2(1/x+1/y+1/z) =<1/2 ( xy+yz+xz / xyz)=1/2 ..........

đoạn sau chj chịu

^^ sorry

Bình luận (0)
 Khách vãng lai đã xóa
H24
14 tháng 8 2020 lúc 15:48

Bài này là câu lớp 8 rất quen thuộc rùiiiiiii !!!!!!!!

gt <=>    \(\frac{x+y+z}{xyz}=1\)

<=>    \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt:   \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

=>    \(ab+bc+ca=1\)

VÀ:    \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)

THAY VÀO P TA ĐƯỢC:    

\(P=\frac{1}{\sqrt{1+\frac{1}{a^2}}}+\frac{1}{\sqrt{1+\frac{1}{b^2}}}+\frac{1}{\sqrt{1+\frac{1}{c^2}}}\)

=>     \(P=\frac{1}{\sqrt{\frac{a^2+1}{a^2}}}+\frac{1}{\sqrt{\frac{b^2+1}{b^2}}}+\frac{1}{\sqrt{\frac{c^2+1}{c^2}}}\)

=>     \(P=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)

Thay     \(1=ab+bc+ca\)    vào P ta sẽ được:

=>      \(P=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

=>     \(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

=>      \(2P=2.\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+c}}+2.\sqrt{\frac{b}{b+a}}.\sqrt{\frac{b}{b+c}}+2.\sqrt{\frac{c}{c+a}}.\sqrt{\frac{c}{c+b}}\)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:

=>      \(2P\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\)

=>     \(2P\le\left(\frac{a}{a+b}+\frac{b}{b+a}\right)+\left(\frac{b}{b+c}+\frac{c}{c+b}\right)+\left(\frac{c}{c+a}+\frac{a}{a+c}\right)\)

=>     \(2P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\)

=>     \(2P\le1+1+1=3\)

=>     \(P\le\frac{3}{2}\)

DẤU "=" XẢY RA <=>    \(a=b=c\)    . MÀ     \(ab+bc+ca=1\)

=>     \(a=b=c=\sqrt{\frac{1}{3}}\)

=>     \(x=y=z=\sqrt{3}\)

VẬY P MAX \(=\frac{3}{2}\)      <=>      \(x=y=z=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
NH
Xem chi tiết
DA
29 tháng 5 2015 lúc 21:40

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\Leftrightarrow2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le1\)

\(\frac{1}{x+y}+\frac{1}{y+z}\ge\frac{4}{2x+y+z}\Rightarrow2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge4\left(\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\right)\)

\(4M\le1\Leftrightarrow M\le\frac{1}{4}\)     \(M=\frac{1}{4}\Leftrightarrow x=y=z=3\)

Bình luận (0)
TN
Xem chi tiết
KN
12 tháng 3 2020 lúc 17:52

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bddt Bunhiacopski dạng phân thức:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\frac{9}{4}\)

\(\Rightarrow-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le\frac{-9}{4}\)

\(\Rightarrow3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le\frac{3}{4}\)

Dấu "=" khi x = y = z = \(\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
16 tháng 3 2020 lúc 14:11

\(\frac{3}{4}-P=\Sigma\frac{x\left(y-z\right)^2}{4\left(x+1\right)\left(x+y\right)\left(x+z\right)}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
KL
3 tháng 4 2020 lúc 16:46

Cách hack điểm hỏi đáp trên OLM: https://www.youtube.com/watch?v=sMvl8_N_N54

Bình luận (0)
 Khách vãng lai đã xóa